山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (3): 35-40.doi: 10.6040/j.issn.1671-7554.0.2021.0176
张栌丹1,丁晓玲2,崔舒悦1,程晨1,魏福兰3,丁刚1
ZHANG Ludan1, DING Xiaoling2, CUI Shuyue1, CHENG Chen1, WEI Fulan3, DING Gang1
摘要: 目的 探讨牙周膜干细胞(PDLSCs)对外周血来源巨噬细胞的表型和功能的体外影响。 方法 分离、培养PDLSCs,并检测其间充质干细胞标志物基质细胞抗原-1(STRO-1)、表面抗原146(CD146)、表面抗原90(CD90)的表达情况及骨向、脂肪向分化能力。分离外周血来源的巨噬细胞。将PDLSCs与等量异体巨噬细胞在Transwell培养系统中37 ℃、5% CO2条件下共培养,为实验组。巨噬细胞的单独培养设置为对照组。共培养3 d后,提取巨噬细胞,采用流式细胞术检测CD14+CD206+巨噬细胞的表达情况;共培养24 h后,提取巨噬细胞,加入荧光素异硫氰酸酯标记的葡聚糖,孵育 30 min后,采用流式细胞术检测巨噬细胞的吞噬率;共同培养3 d后,取细胞培养上清,采用酶联免疫吸附法检测上清中白介素-10(IL-10)、白介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的浓度。 结果 PDLSCs呈梭状的成纤维细胞样,表达STRO-1、CD146和CD90,可以骨向和脂肪向分化。与对照组相比:(1)共培养组的CD14+CD206+巨噬细胞表达率明显升高[(38.73±6.32)% vs(8.39±2.71)%,t=127.7,P=0.004 9];(2)共培养组的巨噬细胞吞噬率无显著变化[(36.7±5.1)% vs(38.6±4.3)%,t=3.904,P=0.159 6];(3)共培养组的IL-10浓度明显升高[(382.5±18.2)pg/mL vs (198.5±11.4)pg/mL, t=76.36,P=0.000 3], IL-6浓度显著降低[(453.1±70.42)pg/mL vs(936.7±49.9)pg/mL, t=53.12,P=0.011 5], TNF-α浓度也显著降低[(64.9±11.3)pg/mL vs(131.7±19.3)pg/mL, t=51.48,P=0.000 6]。 结论 PDLSCs可以促使巨噬细胞向M2型极化,不影响巨噬细胞的吞噬功能,促进抗炎因子IL-10的分泌,抑制炎性因子IL-6和 TNF-α的分泌。
中图分类号:
[1] Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression [J]. J Dent Res, 2014, 93(11): 1045-1053. [2] Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: Consensus report [J]. J Clin Periodontol, 2020, 47(3): 268-288. [3] Baeza M, Morales A, Cisterna C, et al. Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis [J]. J Appl Oral Sci, 2020, 28: e20190248. doi:10.1590/1678-7757-2019-0248. [4] Kocher T, König J, Borgnakke WS, et al. Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge [J]. Periodontol 2000, 2018, 78(1): 59-97. [5] Opacic J, Maldonado A, Ramseier CA, et al. Influence of periodontitis on pregnancy and childbirth [J]. Swiss Dent J, 2019, 129(7/8): 581-589. [6] Manresa C, Sanz-Miralles EC, Twigg J, et al. Supportive periodontal therapy(SPT)for maintaining the dentition in adults treated for periodontitis [J]. Cochrane Database Syst Rev, 2018, 1: CD009376. [7] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament [J]. Lancet, 2004, 364(9429): 149-155. [8] Xu XY, Li X, Wang J, et al. Periodontal tissue regeneration using stem cells: strategies and translational considerations [J]. Stem Cells Transl Med, 2019, 8(4): 392-403. [9] Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine [J]. Stem Cells, 2008, 26(4): 1065-1073. [10] Ding G, Liu Y, Wang W, et al. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine [J]. Stem Cells, 2010, 28(10): 1829-1838. [11] Tomokiyo A, Wada N, Maeda H. Periodontal ligament Stem cells: regenerative potency in periodontium [J]. Stem Cells Dev, 2019, 28(15):974-985. [12] Gao B, Deng R, Chai Y, et al. Macrophage-lineage TRAP+cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration [J]. J Clin Invest, 2019, 129(6): 2578-2594. [13] Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration [J]. Development, 2019, 146(9): dev156000. [14] Yang ZP, Li Q, Wang X, et al. C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis [J]. Proc Natl Acad Sci USA, 2018, 115(43): 11054-11059. [15] Tang R, Wei F, Wei L, et al. Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity [J]. J Tissue Eng Regen Med, 2014, 8(3): 226-232. [16] Liu D, Xu J, Liu O, et al. Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation [J]. J Clin Periodontol, 2012, 39(12): 1174-1182. [17] Liu O, Xu J, Ding G, et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1 [J]. Stem Cells, 2013, 31(7):1371-1382. [18] Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines [J]. Immunity, 2014, 41(1): 14-20. [19] Siamon Gordon, Fernando O Martinez. Alternative activation of macrophages: mechanism and functions [J]. Immunity, 2010, 32(5): 593-604. [20] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease [J]. J Cell Physiol, 2018, 233(9): 6425-6440. [21] Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization [J]. Eur J Pharmacol, 2020, 877: 173090. doi: 10.1016/j.ejphar.2020.173090. [22] Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+)vs. classically and M2(LPS-)vs. alternatively activated macrophages [J]. Front Immunol, 2019, 10: 1084. doi:10.3389/fimmu.2019.01084. [23] Kovach TK, Dighe AS, Lobo PI, et al. Interactions between MSCs and immune cells: implications for bone healing [J]. J Immunol Res, 2015, 2015: 752510. doi:10.1155/2015/752510. [24] Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing [J]. Biomaterials, 2019, 196: 80-89. doi:10.1016/j.biomaterials.2017.12.0. [25] Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production [J]. Nat Med, 2009, 5(1): 42-49. [26] Morand DN, Davideau JL, Clauss F, et al. Cytokines during periodontal wound healing: potential application for new therapeutic approach [J]. Oral Dis, 2017, 23(3): 300-311. [27] Shi M, Wang C, Wang Y, et al. Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization [J]. J Biomed Mater Res A, 2018, 106(5): 1236-1246. [28] Qiu X, Liu S, Zhang H, et al. Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype [J]. Stem Cell Res Ther, 2018, 9(1): 88. [29] Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration [J]. Tissue Eng Part A, 2018, 24(17/18): 1341-1353. [30] 高弘斐, 张潜, 陈龙, 等. 间充质干细胞与巨噬细胞共培养体系的细胞因子表达模式研究[J]. 免疫学杂志, 2017, 33(11): 930-936. GAO Hongfei, ZHANG Qian, CHEN Long, et al. The expression pattern of cytokines in mesenchymal stem cells and macrophages co-cultured system[J]. Immunological Journal, 2017, 33(11): 930-936. [31] 孙瑶, 吕海金, 易小猛, 等. 间充质干细胞通过诱导M2型巨噬细胞治疗急性肺损伤[J].中山大学学报(医学版), 2019, 40(3): 393-400. SUN Yao, LV Haijin, YI Xiaomeng, et al. Mesenchymal stem cells attenuate acute lung injury through inducing M2 macrophage polarization [J]. Journal of Sun Yatsen Univerty(Medical Sciences), 2019, 40(3): 393-400. [32] Philipp D, Suhr L, Wahlers T,et al.Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization [J]. Stem Cell Res Ther, 2018, 9(1): 286. [33] Wang Y, Han B, Wang Y, et al. Mesenchymal stem cell-secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization [J]. Cell Mol Med, 2020, 24(21): 12750-12764. [34] Gong M, Zhuo X, Ma A. STAT6 Upregulation Promotes M2 Macrophage Polarization to Suppress Atherosclerosis [J]. Med Sci Monit Basic Res, 2017, 23: 240-249. doi: 10.12659/msmbr.904014. [35] Liu F, Qiu H, Xue M, et al. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway [J]. Stem Cell Res Ther, 2019, 10(1): 345. |
[1] | 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45. |
[2] | 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9. |
[3] | 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7. |
[4] | 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21. |
[5] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
[6] | 熊艺璇,赵斌,贾凌璐,张文静,徐欣. 姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化[J]. 山东大学学报 (医学版), 2020, 58(5): 19-26. |
[7] | 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14. |
[8] | 王波,薛江,刘爱虹,翟蕊蕊,王一彪. 雷帕霉素调控巨噬细胞表型改善肺动脉高压[J]. 山东大学学报 (医学版), 2018, 56(4): 51-57. |
[9] | 张同超,王志萍. 二硫化碳通过改变卵巢黄体巨噬细胞极化和功能导致胚胎植入障碍[J]. 山东大学学报 (医学版), 2018, 56(2): 80-87. |
[10] | 陈意坤,王克涛,王华阳,邵倩倩,谈万业,宋晓彬,曲迅,魏奉才. KIF4A对巨噬细胞血管生成相关因子表达的调节作用[J]. 山东大学学报(医学版), 2017, 55(1): 39-43. |
[11] | 杨延军,梁静,李芳,杜令席. 常山酮对小鼠子宫内膜异位症巨噬细胞极化的调控作用[J]. 山东大学学报(医学版), 2016, 54(9): 26-31. |
[12] | 宗兆运,李霞,韩振龙,王显腾,郭春,张利宁,石永玉. 肿瘤相关巨噬细胞对肝癌细胞c-Met分子表达的影响[J]. 山东大学学报(医学版), 2016, 54(3): 14-18. |
[13] | 赵璐, 孙俊波, 魏桂梅. MRP8通过NF-κB信号通路调控痛风细胞模型中IL-1β的表达[J]. 山东大学学报(医学版), 2015, 53(6): 44-47. |
[14] | 冯青, 谭晓冬. L161982对大鼠实验性自身免疫性神经炎中巨噬细胞亚型变化的影响[J]. 山东大学学报(医学版), 2015, 53(10): 21-25. |
[15] | 陈更越, 张静, 丁树艳, 马莉莉, 王伟, 田园. HO-1及MIF在子痫前期患者胎盘及脐组织的表达[J]. 山东大学学报(医学版), 2014, 52(S2): 1-2. |
|