您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (3): 35-40.doi: 10.6040/j.issn.1671-7554.0.2021.0176

• 基础医学 • 上一篇    下一篇

牙周膜干细胞调节巨噬细胞功能的体外研究

张栌丹1,丁晓玲2,崔舒悦1,程晨1,魏福兰3,丁刚1   

  1. 1. 潍坊医学院口腔医学院, 山东 潍坊 261053;2. 潍坊医学院临床能力培训中心, 山东 潍坊 261053;3.山东大学口腔医学院, 山东 济南 250012
  • 发布日期:2021-04-06
  • 通讯作者: 丁刚. E-mail:dinggang@wfmc.edu.cn
  • 基金资助:
    国家自然科学基金(81570945);全牙再生与口腔组织功能重建北京市重点实验室开放课题(KFKT2019013)

Periodontal ligament stem cells regulate the functions of macrophages in vitro

ZHANG Ludan1, DING Xiaoling2, CUI Shuyue1, CHENG Chen1, WEI Fulan3, DING Gang1   

  1. 1. School of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China;
    2. Clinical Competency Training Center, Weifang Medical University, Weifang 261053, Shandong, China;
    3. School of Stomatology, Shandong University, Jinan 250012, Shandong, China
  • Published:2021-04-06

摘要: 目的 探讨牙周膜干细胞(PDLSCs)对外周血来源巨噬细胞的表型和功能的体外影响。 方法 分离、培养PDLSCs,并检测其间充质干细胞标志物基质细胞抗原-1(STRO-1)、表面抗原146(CD146)、表面抗原90(CD90)的表达情况及骨向、脂肪向分化能力。分离外周血来源的巨噬细胞。将PDLSCs与等量异体巨噬细胞在Transwell培养系统中37 ℃、5% CO2条件下共培养,为实验组。巨噬细胞的单独培养设置为对照组。共培养3 d后,提取巨噬细胞,采用流式细胞术检测CD14+CD206+巨噬细胞的表达情况;共培养24 h后,提取巨噬细胞,加入荧光素异硫氰酸酯标记的葡聚糖,孵育 30 min后,采用流式细胞术检测巨噬细胞的吞噬率;共同培养3 d后,取细胞培养上清,采用酶联免疫吸附法检测上清中白介素-10(IL-10)、白介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的浓度。 结果 PDLSCs呈梭状的成纤维细胞样,表达STRO-1、CD146和CD90,可以骨向和脂肪向分化。与对照组相比:(1)共培养组的CD14+CD206+巨噬细胞表达率明显升高[(38.73±6.32)% vs(8.39±2.71)%,t=127.7,P=0.004 9];(2)共培养组的巨噬细胞吞噬率无显著变化[(36.7±5.1)% vs(38.6±4.3)%,t=3.904,P=0.159 6];(3)共培养组的IL-10浓度明显升高[(382.5±18.2)pg/mL vs (198.5±11.4)pg/mL, t=76.36,P=0.000 3], IL-6浓度显著降低[(453.1±70.42)pg/mL vs(936.7±49.9)pg/mL, t=53.12,P=0.011 5], TNF-α浓度也显著降低[(64.9±11.3)pg/mL vs(131.7±19.3)pg/mL, t=51.48,P=0.000 6]。 结论 PDLSCs可以促使巨噬细胞向M2型极化,不影响巨噬细胞的吞噬功能,促进抗炎因子IL-10的分泌,抑制炎性因子IL-6和 TNF-α的分泌。

关键词: 牙周膜干细胞, 巨噬细胞, 极化, Transwell共培养

Abstract: Objective To explore the effects of periodontal ligament stem cells(PDLSCs)on the phenotypes and functions of macrophages. Methods After PDLSCs were isolated and cultured, the expression profiles of STRO-1, CD146 and CD90, as well as the multipotent differentiation capabilities were detected. After macrophages were isolated from peripheral blood, they were cocultured with an equal amount PDLSCs in Transwell co-culture condition at 37 ℃ and 5% CO2, which were set as the experimental group. Macrophages cultured alone were set as the control group. After 3d co-culture, the expression profiles of CD14+CD206+ macrophages were examined by flow cytometry. After 24 h co-culture, macrophages were obtained, fluorescein isothiocyanate labeled dextran was added. Then, after 30 min incubation, the phagocytosis rate of macrophages was detected with flow cytometry. After 3 d co-culture, the supernatant was collected, and the concentrations of IL-10, IL-6 and TNF-α were determined with enzyme-linked immunosorbent assays. Results PDLSCs displayed fusiform fibroblast-like morphology, positive for the mesenchymal stem cells surface markers including STRO-1, CD146 and CD90, and could differentiate into bone cells and lipid cells. Compared with the control group, the experimental group had significantly increased expression of CD14+CD206+macrophages [(38.73±6.32)% vs(8.39±2.71)%, t=127.7, P=0.004 9), unchanged phagocytosis rate of macrophages [(36.7±5.1)% vs(38.6±4.3)%, t=3.904, P=0.159 6], elevated level of IL-10 [(382.5±18.2)pg/mL vs(198.5±11.4)pg/mL, t=76.36, P=0.000 3], but decreased levels of IL-6 [(453.1±70.42)pg/mL vs(936.7±49.9)pg/mL, t=53.12, P=0.011 5)and TNF-α [(64.9±11.3)pg/mL vs(131.7±19.3)pg/mL, t=51.48, P=0.000 6]. Conclusion PDLSCs are capable of converting macrophages into M2 phenotype without affecting the phagocytic functions. Meanwhile, they can stimulate the secretion of IL-10 but inhibit the secretion of IL-6 and TNF-α.

Key words: Periodontal ligament stem cells, Macrophages, Polarization, Transwell co-culture system

中图分类号: 

  • R781
[1] Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression [J]. J Dent Res, 2014, 93(11): 1045-1053.
[2] Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: Consensus report [J]. J Clin Periodontol, 2020, 47(3): 268-288.
[3] Baeza M, Morales A, Cisterna C, et al. Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis [J]. J Appl Oral Sci, 2020, 28: e20190248. doi:10.1590/1678-7757-2019-0248.
[4] Kocher T, König J, Borgnakke WS, et al. Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge [J]. Periodontol 2000, 2018, 78(1): 59-97.
[5] Opacic J, Maldonado A, Ramseier CA, et al. Influence of periodontitis on pregnancy and childbirth [J]. Swiss Dent J, 2019, 129(7/8): 581-589.
[6] Manresa C, Sanz-Miralles EC, Twigg J, et al. Supportive periodontal therapy(SPT)for maintaining the dentition in adults treated for periodontitis [J]. Cochrane Database Syst Rev, 2018, 1: CD009376.
[7] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament [J]. Lancet, 2004, 364(9429): 149-155.
[8] Xu XY, Li X, Wang J, et al. Periodontal tissue regeneration using stem cells: strategies and translational considerations [J]. Stem Cells Transl Med, 2019, 8(4): 392-403.
[9] Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine [J]. Stem Cells, 2008, 26(4): 1065-1073.
[10] Ding G, Liu Y, Wang W, et al. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine [J]. Stem Cells, 2010, 28(10): 1829-1838.
[11] Tomokiyo A, Wada N, Maeda H. Periodontal ligament Stem cells: regenerative potency in periodontium [J]. Stem Cells Dev, 2019, 28(15):974-985.
[12] Gao B, Deng R, Chai Y, et al. Macrophage-lineage TRAP+cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration [J]. J Clin Invest, 2019, 129(6): 2578-2594.
[13] Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration [J]. Development, 2019, 146(9): dev156000.
[14] Yang ZP, Li Q, Wang X, et al. C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis [J]. Proc Natl Acad Sci USA, 2018, 115(43): 11054-11059.
[15] Tang R, Wei F, Wei L, et al. Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity [J]. J Tissue Eng Regen Med, 2014, 8(3): 226-232.
[16] Liu D, Xu J, Liu O, et al. Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation [J]. J Clin Periodontol, 2012, 39(12): 1174-1182.
[17] Liu O, Xu J, Ding G, et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1 [J]. Stem Cells, 2013, 31(7):1371-1382.
[18] Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines [J]. Immunity, 2014, 41(1): 14-20.
[19] Siamon Gordon, Fernando O Martinez. Alternative activation of macrophages: mechanism and functions [J]. Immunity, 2010, 32(5): 593-604.
[20] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease [J]. J Cell Physiol, 2018, 233(9): 6425-6440.
[21] Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization [J]. Eur J Pharmacol, 2020, 877: 173090. doi: 10.1016/j.ejphar.2020.173090.
[22] Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+)vs. classically and M2(LPS-)vs. alternatively activated macrophages [J]. Front Immunol, 2019, 10: 1084. doi:10.3389/fimmu.2019.01084.
[23] Kovach TK, Dighe AS, Lobo PI, et al. Interactions between MSCs and immune cells: implications for bone healing [J]. J Immunol Res, 2015, 2015: 752510. doi:10.1155/2015/752510.
[24] Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing [J]. Biomaterials, 2019, 196: 80-89. doi:10.1016/j.biomaterials.2017.12.0.
[25] Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production [J]. Nat Med, 2009, 5(1): 42-49.
[26] Morand DN, Davideau JL, Clauss F, et al. Cytokines during periodontal wound healing: potential application for new therapeutic approach [J]. Oral Dis, 2017, 23(3): 300-311.
[27] Shi M, Wang C, Wang Y, et al. Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization [J]. J Biomed Mater Res A, 2018, 106(5): 1236-1246.
[28] Qiu X, Liu S, Zhang H, et al. Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype [J]. Stem Cell Res Ther, 2018, 9(1): 88.
[29] Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration [J]. Tissue Eng Part A, 2018, 24(17/18): 1341-1353.
[30] 高弘斐, 张潜, 陈龙, 等. 间充质干细胞与巨噬细胞共培养体系的细胞因子表达模式研究[J]. 免疫学杂志, 2017, 33(11): 930-936. GAO Hongfei, ZHANG Qian, CHEN Long, et al. The expression pattern of cytokines in mesenchymal stem cells and macrophages co-cultured system[J]. Immunological Journal, 2017, 33(11): 930-936.
[31] 孙瑶, 吕海金, 易小猛, 等. 间充质干细胞通过诱导M2型巨噬细胞治疗急性肺损伤[J].中山大学学报(医学版), 2019, 40(3): 393-400. SUN Yao, LV Haijin, YI Xiaomeng, et al. Mesenchymal stem cells attenuate acute lung injury through inducing M2 macrophage polarization [J]. Journal of Sun Yatsen Univerty(Medical Sciences), 2019, 40(3): 393-400.
[32] Philipp D, Suhr L, Wahlers T,et al.Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization [J]. Stem Cell Res Ther, 2018, 9(1): 286.
[33] Wang Y, Han B, Wang Y, et al. Mesenchymal stem cell-secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization [J]. Cell Mol Med, 2020, 24(21): 12750-12764.
[34] Gong M, Zhuo X, Ma A. STAT6 Upregulation Promotes M2 Macrophage Polarization to Suppress Atherosclerosis [J]. Med Sci Monit Basic Res, 2017, 23: 240-249. doi: 10.12659/msmbr.904014.
[35] Liu F, Qiu H, Xue M, et al. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway [J]. Stem Cell Res Ther, 2019, 10(1): 345.
[1] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[2] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[3] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[4] 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21.
[5] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[6] 熊艺璇,赵斌,贾凌璐,张文静,徐欣. 姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化[J]. 山东大学学报 (医学版), 2020, 58(5): 19-26.
[7] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
[8] 王波,薛江,刘爱虹,翟蕊蕊,王一彪. 雷帕霉素调控巨噬细胞表型改善肺动脉高压[J]. 山东大学学报 (医学版), 2018, 56(4): 51-57.
[9] 张同超,王志萍. 二硫化碳通过改变卵巢黄体巨噬细胞极化和功能导致胚胎植入障碍[J]. 山东大学学报 (医学版), 2018, 56(2): 80-87.
[10] 陈意坤,王克涛,王华阳,邵倩倩,谈万业,宋晓彬,曲迅,魏奉才. KIF4A对巨噬细胞血管生成相关因子表达的调节作用[J]. 山东大学学报(医学版), 2017, 55(1): 39-43.
[11] 杨延军,梁静,李芳,杜令席. 常山酮对小鼠子宫内膜异位症巨噬细胞极化的调控作用[J]. 山东大学学报(医学版), 2016, 54(9): 26-31.
[12] 宗兆运,李霞,韩振龙,王显腾,郭春,张利宁,石永玉. 肿瘤相关巨噬细胞对肝癌细胞c-Met分子表达的影响[J]. 山东大学学报(医学版), 2016, 54(3): 14-18.
[13] 赵璐, 孙俊波, 魏桂梅. MRP8通过NF-κB信号通路调控痛风细胞模型中IL-1β的表达[J]. 山东大学学报(医学版), 2015, 53(6): 44-47.
[14] 冯青, 谭晓冬. L161982对大鼠实验性自身免疫性神经炎中巨噬细胞亚型变化的影响[J]. 山东大学学报(医学版), 2015, 53(10): 21-25.
[15] 陈更越, 张静, 丁树艳, 马莉莉, 王伟, 田园. HO-1及MIF在子痫前期患者胎盘及脐组织的表达[J]. 山东大学学报(医学版), 2014, 52(S2): 1-2.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙维彤,邹伟伟,李爱国,席延伟,张娜. 脂质体粒径对促进托氟啶口服吸收的影响[J]. 山东大学学报(医学版), 2007, 45(6): 639 -642 .
[2] 于清梅,武玉玲,宋海岩,尹华伟,庄园 . p38丝裂原活化蛋白激酶在小鼠早期胚胎及围植入期子宫内膜的表达[J]. 山东大学学报(医学版), 2008, 46(2): 123 -127 .
[3] 肖伟玲,林亚杰,牟东珍,孙萍,梁淑娟 . 分泌型人IL-1β表达载体的构建及在H7402细胞中的表达[J]. 山东大学学报(医学版), 2008, 46(2): 119 -122 .
[4] 张勇,叶静,郭新星,肖水清. 牙周膜牵张成骨快速移动牙牙髓中IL-8表达的变化[J]. 山东大学学报(医学版), 2008, 46(4): 379 -381 .
[5] 高静,陈雯,张同霞,王小花,戴廷军,姚红,赵秀鹤,迟兆富,单培彦 . 颞叶癫痫大鼠海马线粒体细胞色素氧化酶亚基Ⅲ和Ⅳ表达的变化[J]. 山东大学学报(医学版), 2007, 45(8): 817 -820 .
[6] . 干细胞标记物LGR5在结直肠癌发生发展中的表达及意义[J]. 山东大学学报(医学版), 2009, 47(8): 85 -88 .
[7] 杨奎忠,孙雪飞,项继顺,杜庆聪,黄凤昌 . c-FLIP反义寡核苷酸对食管癌EC109细胞裸鼠移植瘤抑制作用的实验研究[J]. 山东大学学报(医学版), 2007, 45(12): 1234 -1238 .
[8] 俞新爽,韩俊庆,王兴文,盛巍,王瑜. 乳腺癌患者细胞免疫水平与预后危险因素的关系及临床意义[J]. 山东大学学报(医学版), 2007, 45(9): 934 -937 .
[9] 于渊1,李岩1,荣风年2,梁婧1,刘晓琳1,王福立1. 自体CIK细胞治疗对卵巢癌调节性T细胞的影响[J]. 山东大学学报(医学版), 2010, 48(5): 101 -104 .
[10] 王海峰,史本康,张克勤,李永智,朱耀丰,王海新. B超检测的精索静脉直径及返流与术后精液质量的关系[J]. 山东大学学报(医学版), 2007, 45(7): 751 -752 .