您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (4): 51-57.doi: 10.6040/j.issn.1671-7554.0.2017.850

• • 上一篇    

雷帕霉素调控巨噬细胞表型改善肺动脉高压

王波,薛江,刘爱虹,翟蕊蕊,王一彪   

  1. 山东大学第二医院儿内科, 山东 济南 250013
  • 发布日期:2022-09-27
  • 通讯作者: 王一彪. E-mail:wangyibiao@sdu.edu.cn
  • 基金资助:
    山东大学第二医院科研基金种子基金(S2015010006)

Rapamycin improved pulmonary artery hypertension via modulating the phenotypes of macrophages

WANG Bo, XUE Jiang, LIU Aihong, ZHAI Ruirui, WANG Yibiao   

  1. Department of Pediatrics, The Second Hospital of Shandong University, Jinan 250013, Shandong, China
  • Published:2022-09-27

摘要: 目的 研究雷帕霉素(RAP)调控巨噬细胞表型对肺动脉高压(PAH)的影响及其作用机制。 方法 建立PAH大鼠模型,随机分为对照组、PAH组和PAH+RAP组,每组10只。造模后5 d分别给予对照组溶媒和PAH+RAP组RAP肌肉注射。通过右心导管检测平均肺动脉压(mPAP),并称量左右心室、室间隔以计算右心室肥厚指数(RVHI)。通过免疫组化技术评价巨噬细胞浸润程度和肺小动脉平滑肌细胞增殖程度,免疫印迹技术检测α-SMA蛋白表达水平,免疫荧光检测M2型巨噬细胞表达水平。利用RT-PCR检测各组TNF-α、IL-1β、IL-6和IL-10 mRNA表达水平。体外培养巨噬细胞,分别给予LPS+INF-γ、IL-4和RAP干预,并将细胞分为空白对照组、LPS+INF-γ干预组、IL-4干预组和LPS+INF-γ+RAP干预组;流式细胞术检测巨噬细胞表型,RT-PCR检测以上各炎性因子mRNA表达水平。 结果 成功建立了PAH大鼠模型。PAH组的mPAP、RVHI、α-SMA蛋白表达水平、巨噬细胞浸润程度以及炎性因子TNF-α、IL-1β、IL-6、IL-10 mRNA的表达水平均高于对照组(P<0.05)。PAH+RAP组的mPAP、RVHI、α-SMA蛋白表达水平以及炎性因子TNF-α、IL-1β、IL-6、IL-10 mRNA的表达水平均低于PAH组(P<0.05)。PAH+RAP组M2型巨噬细胞相对表达水平高于PAH组(P<0.05)。体外实验中,LPS+INF-γ干预组的CD86阳性巨噬细胞百分比及TNF-α、IL-1β、IL-6、IL-10 mRNA相对表达水平均高于空白对照组(P<0.05);LPS+IFN-γ+RAP干预组的CD86阳性巨噬细胞百分比及TNF-α、IL-1β、IL-6、IL-10 mRNA相对表达水平均低于LPS+INF-γ干预组(P<0.05)。 结论 PAH的发生伴随着巨噬细胞浸润及炎性因子表达水平的升高;RAP可通过诱导巨噬细胞向M2型转化,从而降低炎性因子表达水平,进而改善PAH。

关键词: 雷帕霉素, 肺动脉高压, 巨噬细胞, 肺动脉平滑肌细胞, 表型转换, 白介素-1β, 白介素-6

Abstract: Objective To study the effect of rapamycin(RAP)modulating macrophage phenotypes on pulmonary artery hypertension(PAH)and the correlated mechanism. Methods Thirty male Sprague-Dawley rats were randomly divided into the control, PAH and PAH+RAP groups, ten in each group. PAH rat model was induced by left pneumonectomy(PE)and monocrotaline(MCT). Five days after PAH model establishment, the control group and the PAH+RAP group received an intramuscular injection of solvent and RAP for thirty days, respectively. The mean pulmonary artery pressure(mPAP)and right ventricular hypertrophy index(RVHI)were measured in each group via the right cardiac catheter. The degrees of macrophages infiltration and the proliferation of pulmonary arteriolar smooth muscle cells 山 东 大 学 学 报 (医 学 版)56卷4期 -王波,等.雷帕霉素调控巨噬细胞表型改善肺动脉高压 \=-were evaluated by immunohistochemistry, the expression of α-SMA protein was detected by Western blotting, and the expression levels of M2 macrophages was detected by immunofluorescence. The expression levels of TNF-α, IL-1, IL-6 and IL-10 mRNA in each group were detected by RT-PCR. Macrophages were cultured in vitro and treated with LPS+INF-γ, IL-4, and LPS+INF-γ+RAP, respectively; the cells were divided into the blank control group, LPS+INF-γ group, IL-4 group, and LPS+INF-γ+RAP group accordingly. The phenotypes of macrophages were detected by flow cytometry, and the mRNA expression levels of the inflammatory factors were dected by RT-PCR. Results PHA rat models were established successfully. The mPAP, RVHI, α-SMA protein expression level, macrophage infiltration degree and mRNA expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and IL-10 in PAH group were higher than those in the control group(all P<0.05). The mPAP, RVHI, α-SMA protein expression level, and mRNA expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and IL-10 in PAH+RAP group were lower than those in PAH group(all P<0.05). The expression level of M2-type macrophages in PAH+RAP group was higher than that in PAH group(P<0.05). CD86 positive macrophages percentage and mRNA expression levels of TNF-α, IL-1β, IL-6, and IL-10 in LPS+INF-γ group were higher than those in the blank control group in vitro(all P<0.05). CD86 positive macrophages percentage and mRNA expression levels of TNF-α, IL-1β, IL-6, and IL-10 in LPS+IFN-γ+RAP group were lower than those in LPS+INF-γ group(all P<0.05). Conclusion PAH occurrence is accompanied with macrophage infiltration and expression level increase of inflammatory factors. RAP improves PAH via reducing inflammatory response partly depending on inducing the macrophages transformation into M2.

Key words: Rapamycin, Pulmonary arterial hypertension, Macrophages, Pulmonary arterial smooth muscle cells, Phenotype transformation, Interleukin-lβ, Interleukin-6

中图分类号: 

  • R574
[1] Desai A, Desouza SA. Treatment of pulmonary hypertension with left heart disease: a concise review[J]. Vasc Health Risk Manag, 2017, 13: 415-420.
[2] Pereira SL, Kummerle AE, Fraga CA, et al. A novel Ca2+ channel antagonist reverses cardiac hypertrophy and pulmonary arteriolar remodeling in experimental pulmonary hypertension[J]. Eur J Pharmacol, 2013, 702(1-3): 316-322.
[3] Alencar AK, Pereira SL, Montagnoli TL, et al. Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats[J]. Br J Pharmacol, 2013, 169(5): 953-962.
[4] 余莉,范志宇,谢亮,等.雷帕霉素逆转大鼠肺动脉高压的作用机制研究[J].中国当代儿科杂志,2015, 17(7):731-735. YU Li, FAN Zhiyu, XIE Liang, et al. Mechanisms for reversal of pulmonary hypertension by rapamycin in rats[J]. Chin J Contemp Pediatr, 2015, 17(7):731-735.
[5] Wang AP, Li XH, Yang YM, et al. A critical role of the mTOR/eIF2α pathway in hypoxia-induced pulmonary hypertension[J]. PLoS One, 2015, 10(6): e0130806. doi: 10.1371/journal.pone.0130806.
[6] Zhu L, Yang T, Li L, et al. TSC1 controls macrophage polarization to prevent inflammatory disease[J]. Nat Commun, 2014, 5: 4696.
[7] Kishimoto Y, Kato T, Ito M, et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects[J]. J Thorac Cardiovasc Surg, 2015, 150(3): 645-654.
[8] Vaillancourt M, Ruffenach G, Meloche J, et al. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension[J]. Can J Cardiol, 2015, 31(4): 407-415.
[9] Kiss T, Kovacs K, Komocsi A, et al. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt[J]. PLoS One, 2014, 9(8): e104890. doi: 10.1371/journal.pone.0104890.
[10] Vergadi E, Chang MS, Lee C, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension[J]. Circulation, 2011, 123(18): 1986-1995.
[11] Chen T, Yang C, Li M, et al. Alveolar hypoxia-induced pulmonary inflammation: from local initiation to secondary promotion by activated systemic inflammation[J]. J Vasc Res, 2016, 53(5-6): 317-329.
[12] Yeager ME, Reddy MB, Nguyen CM, et al. Activation of the unfolded protein response is associated with pulmonary hypertension[J]. Pulm Circ, 2012, 2(2): 229-240.
[13] Tian W, Jiang X, Tamosiuniene R, et al. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension[J]. Sci Transl Med, 2013, 5(200): 200ra117.
[14] Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13: 453-461.
[15] 刘斌,王献民,魏丽,等. 4种肺动脉高压动物模型肺血管重构模式的差异研究[J].中国病理生理杂志, 2008, 24(2): 289-293. LIU Bin, WANG Xianmin, WEI Li, et al. Differentiation of pulmonary vascular remodeling pattern in 4 models of pulmonary hypertension[J]. Chinese Journal of Pathophysiology, 2008, 24(2): 289-293.
[16] Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation[J]. Cell metabolism, 2006, 4(1): 13-24.
[17] Price LC, Wort SJ, Perros F, et al. Inflammation in pulmonary arterial hypertension[J]. Chest, 2012, 141(1): 210-221.
[18] Hansson GK. Atherosclerosis-an immune disease: the Anitschkov Lecture 2007[J]. Atherosclerosis, 2009, 202(1): 2-10.
[19] Perros F, Dorfmüller P, Montani D, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 185(3): 311-321.
[20] Sutendra G, Dromparis P, Bonnet S, et al. Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFα contributes to the pathogenesis of pulmonary arterial hypertension[J]. J Mol Med(Berl), 2011, 89(8): 771-783.
[21] 郑亚国.肺动脉高压免疫炎症机制研究进展[J].中国循环杂志, 2013, 28(6): 469-471.
[22] Antunes MA, Abreu SC, Cruz FF, et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema[J]. Respir Res, 2014, 15: 118.
[23] Vergadi E, Chang MS, Lee C, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension[J]. Circulation, 2011, 123(18): 1986-1995.
[24] Ogawa A, Nakamura K, Matsubara H, et al. Prednisolone inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension[J]. Circulation, 2005, 112(12): 1806-1812.
[25] Price LC, Montani D, Tcherakian C, et al. Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats[J]. Eur Respir J, 2011, 37(4): 813-822.
[26] Ma X, Yao J, Yue Y, et al. Rapamycin reduced pulmonary vascular remodelling by inhibiting cell proliferation via Akt/mTOR signalling pathway down-regulation in the carotid artery-jugular vein shunt pulmonary hypertension rat model[J]. Interact Cardiovasc Thorac Surg, 2017, 25(2): 206-211.
[27] Segura-Ibarra V, Amione-Guerra J, Cruz-Solbes AS, et al. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension[J]. Int J Pharm, 2017, 524(1-2): 257-267.
[28] Aghamohammadzadeh R, Zhang YY, Stephens TE, et al. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension[J]. FASEB J, 2016, 30(7): 2511-2527.
[1] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[2] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[3] 张栌丹,丁晓玲,崔舒悦,程晨,魏福兰,丁刚. 牙周膜干细胞调节巨噬细胞功能的体外研究[J]. 山东大学学报 (医学版), 2021, 59(3): 35-40.
[4] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[5] 安袁笑雪,赵玉英,赵翠芬,许瑞英,薛玉文. 合并型甲基丙二酸血症并发肺动脉高压2例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(10): 101-107.
[6] 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21.
[7] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[8] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
[9] 张栾,陈欧,栾云,朱晓波,陈元,王一彪. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22.
[10] 陈意坤,王克涛,王华阳,邵倩倩,谈万业,宋晓彬,曲迅,魏奉才. KIF4A对巨噬细胞血管生成相关因子表达的调节作用[J]. 山东大学学报(医学版), 2017, 55(1): 39-43.
[11] 杨延军,梁静,李芳,杜令席. 常山酮对小鼠子宫内膜异位症巨噬细胞极化的调控作用[J]. 山东大学学报(医学版), 2016, 54(9): 26-31.
[12] 许天一,吴萍,王爱玲,陈丽萍. 米力农雾化治疗小儿重症肺炎合并心力衰竭的疗效[J]. 山东大学学报(医学版), 2016, 54(7): 88-90.
[13] 孙鹏飞,孟晓,张凯,黎莉. 抵抗素样分子 β在动脉粥样硬化斑块稳定性中的作用[J]. 山东大学学报(医学版), 2016, 54(3): 1-4.
[14] 宗兆运,李霞,韩振龙,王显腾,郭春,张利宁,石永玉. 肿瘤相关巨噬细胞对肝癌细胞c-Met分子表达的影响[J]. 山东大学学报(医学版), 2016, 54(3): 14-18.
[15] 杨博,李平,孟立平,周昌钻,潘孙雷,池菊芳,郭航远. 依那普利抑制大鼠血管平滑肌细胞表型转化及可能的信号通路[J]. 山东大学学报(医学版), 2016, 54(2): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!