您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (1): 14-21.doi: 10.6040/j.issn.1671-7554.0.2020.1230

• 基础医学 • 上一篇    下一篇

柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响

江勇1,宋剑刚2,朱大侠1,刘礼剑1   

  1. 南华大学附属南华医院 1. 急诊科;2. 手足外科, 湖南 衡阳 421002
  • 发布日期:2021-01-09
  • 通讯作者: 宋剑刚. E-mail:549317378@qq.com

Effects of naringenin on acute lung injury induced by sepsis via regulating the activation of NLRP3 inflammasome in macrophages

JIANG Yong1, SONG Jiangang2, ZHU Daxia1, LIU Lijian1   

  1. 1. Emergency Department;
    2. Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang 421002, Hunan, China
  • Published:2021-01-09

摘要: 目的 探讨柚皮素(NAR)调控巨噬细胞NOD样受体蛋白3(NLRP3)炎症小体活化对脓毒症致急性肺损伤的影响。 方法 采用随机数字表法将60只雄性SD大鼠分为假手术组、模型组、柚皮素低剂量组(25 mg/kg)和柚皮素高剂量组(75 mg/kg),每组15只。采用盲肠结扎穿孔术(CLP)制备脓毒症大鼠模型,并于术后6、12、18 h腹腔注射不同浓度柚皮素进行干预治疗。术后24 h,颈内动脉插管采血测定氧合指数(OI);收集大鼠支气管肺泡灌洗液(BALF)并分离巨噬细胞,采用RT-PCR法和Western blotting法分别检测巨噬细胞中(NLRP3)、凋亡相关斑点样蛋白(ASC)和半胱天冬酶-1(caspase-1)mRNA及蛋白表达水平;取肺组织,测定肺组织湿/干比(W/D),采用苏木精-伊红染色法观察肺组织病理学改变并评分,采用免疫荧光染色法检测肺组织中巨噬细胞水平,采用ELISA法测定肺组织及肺泡灌洗液(BALF)中白介素1β(IL-1β)、白介素18(IL-18)水平。 结果 (1)与假手术组比较,模型组大鼠肺组织损伤严重,肺组织病理评分、W/D值及巨噬细胞水平升高(P<0.05),OI值降低(P<0.05),而肺组织和BALF中IL-1β、IL-18表达水平以及肺泡巨噬细胞中NLRP3 mRNA(1.027±0.064 vs 5.567±0.208)和蛋白(0.043±0.001 vs 1.242±0.065)、ASC mRNA(0.993±0.035 vs 5.000±0.200)和蛋白(0.018±0.001 vs 0.433±0.060)以及caspase-1 mRNA(0.973±0.038 vs 7.667±0.351)和蛋白(0.101±0.001 vs 0.959±0.078)表达水平均增加,差异有统计学意义(P<0.05);(2)与模型组比较,柚皮素高剂量组大鼠肺组织损伤程度得到改善,肺组织病理评分、W/D值及巨噬细胞水平显著降低(P<0.05),OI值上升(P<0.05),且肺组织和BALF中IL-1β、IL-18表达水平以及肺泡巨噬细胞中NLRP3 mRNA(5.567±0.208 vs 3.367±0.473)和蛋白(1.242±0.065 vs 0.172±0.023)、ASC mRNA(5.000±0.200 vs 3.433±0.404)和蛋白(0.433±0.060 vs 0.121±0.010)以及caspase-1 mRNA(7.667±0.351 vs 4.000±0.200)和蛋白(0.959±0.078 vs 1.020±0.088)表达水平均降低,差异有统计学意义(P<0.05)。而柚皮素低剂量组与模型组比较,相关指标差异均无统计学意义(P>0.05)。 结论 柚皮素可减轻脓毒症大鼠急性肺损伤,其机制可能与抑制肺泡巨噬细胞内NLRP3炎症小体的活化有关。

关键词: 柚皮素, 脓毒症, 急性肺损伤, 巨噬细胞, NOD样受体蛋白3炎症小体

Abstract: Objective To investigate the effects of naringenin(NAR)on sepsis-induced acute lung injury by regulating the activation of NOD-like receptor protein 3(NLRP3)inflammasomes in macrophages. Methods A total of 60 male SD rats were divided into sham operation group, model group, low-dose NAR group(L-NAR, 25 mg/kg)and high-dose NAR group(H-NAR, 75 mg/kg)by random digital table method, with 15 rats in each group. The rat models of sepsis were prepared by cecal ligation and puncture(CLP), and different concentrations of NAR were intraperitoneally injected at 6, 12, and 18 h after the operation. At 24 h after CLP, blood samples were taken with internal carotid artery cannula to measure oxygenation index(OI). The bronchoalveolar lavage fluid(BALF)was collected and macrophages were isolated. The mRNA and protein expressions of NLRP3, apoptosis associated speck like protein containing a CARD(ASC)and caspase-1 in the macrophages were detected with RT-PCR and Western blotting, respectively. The wet/dry ratio(W/D)of lung tissues was determined, and the histopathological changes were observed with HE staining. The level of macrophages in lung tissues was detected with immunofluorescence staining, and the levels of interleukin-1β(IL-1β)and interleukin-1β(IL-18)in lung tissues and BALF were determined with ELISA. Results (1) Compared with the sham group, the model group had severer lung tissue injury, elevated lung histopathological score, W/D and macrophage level(P<0.05), decreased OI(P<0.05), increased expressions of IL-1β and IL-18 in lung tissues and BALF, as well as increased NLRP3 mRNA(1.027±0.064 vs 5.567±0.208)and protein(0.043±0.001 vs 1.242±0.065), ASC mRNA(0.993±0.035 vs 5.000±0.200)and protein(0.018±0.001 vs 0.433±0.060), and caspase-1 mRNA(0.973±0.038 vs 7.667±0.351)and protein(0.101±0.001 vs 0.959±0.078)in macrophages(P<0.05). (2) Compared with the model group, the H-NAR group showed improved lung tissue injury, decreased lung histopathological score, W/D and macrophage level(P<0.05), increased OI(P<0.05), decreased expressions of IL-1β and IL-18 in lung tissues and BALF, as well as decreased NLRP3 mRNA(5.567±0.208 vs 3.367±0.473)and protein(1.242±0.065 vs 0.172±0.023), ASC mRNA(5.000±0.200 vs 3.433±0.404)and protein(0.433±0.060 vs 0.121±0.010)and caspase-1 mRNA(7.667±0.351 vs 4.000±0.200)and protein(0.959±0.078 vs 1.020±0.088)in macrophages(P<0.05). (3) There were no significant differences in the indicators between the L-NAR group and model group(P>0.05). Conclusion Naringenin can alleviate acute lung injury in sepsis rats, and the mechanism may be related to the inhibition of the activation of NLRP3 inflammasomes in alveolar macrophages.

Key words: Naringenin, Sepsis, Acute lung injury, Macrophages, NOD-like receptor protein 3

中图分类号: 

  • R574
[1] Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392(10): 75-87.
[2] Huang M, Cai S, Su J. The Pathogenesis of Sepsis and Potential Therapeutic Targets[J]. Int J Mol Sci, 2019, 20(21): 5376-5382.
[3] 王春娜. 支气管哮喘患者血清细胞因子、NLRP3 mRNA及诱导痰黏蛋白水平的变化[J]. 中国现代医学杂志, 2018, 28(26): 104-107. WANG Chunna. Changes of serum cytokines, NLRP3 mRNA and induced sputum mucin in patients with bronchial asthma[J]. China Journal of Modern Medicine, 2018, 28(26): 104-107.
[4] Sun L, Zhu M, Feng W, et al. Exosomal miRNA Let-7 from menstrual blood-derived endometrial stem cells alleviates pulmonary fibrosis through regulating mitochondrial DNA damage[J]. Oxid Med Cell Longev, 2019, 22(1): 450-461.
[5] Tang B, Chen GX, Liang MY, et al. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats[J]. Int J Cardiol, 2015, 180: 134-141. doi: 10.1016/j.ijcard.2014.11.161.
[6] Faner R, Sobradillo P, Noguera A, et al. The inflammasome pathway in stable COPD and acute exacerbations[J]. ERJ Open Res, 2016, 2(3): 232-239.
[7] Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update[J]. Life Sci, 2018, 215: 43-56. doi: 10.1016/j.lfs.2018.10.066.
[8] Zhao M, Li C, Shen F, et al. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway[J]. Exp Ther Med, 2017, 14(3): 2228-2234.
[9] Chen C, Wei YZ, He XM, et al. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation[J]. Front Immunol, 2019, 10: 936-948. doi: 10.3389/fimmu.2019.00936.
[10] 高友光, 林献忠, 林博, 等. 白藜芦醇对脓毒症急性肾损伤大鼠肾小管上皮细胞线粒体功能的影响[J]. 中华麻醉学杂志, 2019, 39(7): 873-876. GAO Youguang, LIN Xianzhong, LIN Bo, et al. Effect of resveratrol on mitochondrial function in renal tubular epithelial cells of rats with sepsis-induced acute kidney injury[J]. Chinese Journal of Anesthesiology, 2019, 39(7): 873-876.
[11] 周明明, 蒋正英, 李蕊, 等. 白藜芦醇对脓毒血症所诱导大鼠心肌损伤的保护作用及其机制研究[J]. 免疫学杂志, 2018, 34(12): 1053-1058. ZHOU Mingming, JIANG Zhengying, LI Rui, et al. Protective effects and mechanism of resveratrol on myocardial injury induced by sepsis in rats[J]. Immunology, 2018, 34(12): 1053-1058.
[12] 顾娜, 张桂贤, 史鹏程, 等. PM2.5致大鼠肺损伤模型中肺巨噬细胞NLRP3炎性小体活化研究[J]. 天津医药, 2018, 46(11): 33-37. GU Na, ZHANG Guixian, SHI Pengcheng, et al. Study on NLRP3 inflammasome activation of alveolar macrophages in rat model of lung injury induced by PM2.5[J]. Tianjin Medical Journal, 2018, 46(11): 33-37.
[13] 蔡治祥, 王晓武, 李莉, 等. NOD样受体蛋白3炎性小体与肺部疾病的研究进展[J]. 实用医学杂志, 2019, 35(22): 123-134. CAI Zhixiang, WANG Xiaowu, LI Li, et al. Research progress of NLRP3 inflammasome in lung diseases[J]. The Journal of Practical Medicine, 2019, 35(22): 123-134.
[14] Ying Y, Mao Y, Yao M. NLRP3 Inflammasome activation by microRNA-495 promoter methylation maycontribute to the progression of acute lung injury[J]. Mol Ther Nucleic Acids, 2019, 18(6): 801-814.
[15] Umbrello M, Formenti P, Bolgiaghi L, et al. Current concepts of ARDS: A narrative review[J]. Int J Mol Sci, 2016, 18(1): 64-77.
[16] Liu J, Du J, Cheng X, et al. Effect of netrin-1 anti-Inflammatory factor on acute lung injury in sepsis rats[J]. Med Sci Monit, 2019, 25(22): 7928-7935.
[17] Li R, Ren T, Zeng J. Mitochondrial coenzyme Q protects sepsis-induced acute lung injury by activating PI3K/Akt/GSK-3β/mTOR pathway in rats[J]. Biomed Res Int, 2019, 13(2): 524-529.
[18] 季鹏, 赵文明, 于桐. 柚皮素的最新研究进展[J]. 中国新药杂志, 2015, 24(12): 1382-1386. JI Peng, ZHAO Wenming, YU Tong. Recent research progress of naringin[J]. Chinese Journal of New Drugs, 2015, 24(12): 1382-1386.
[19] Hernández-Aquino E, Quezada-Ramírez MA, Silva-Olivares A, et al. Naringenin attenuates the progression of liver fibrosis via inactivation of hepatic stellate cells and profibrogenic pathways[J]. Eur J Pharmacol, 2019, 15(2): 172-179.
[20] Zhao Q, Yang H, Liu F, et al. Naringenin exerts cardiovascular protective effect in a palmitate-induced human umbilical vein endothelial cell injury model via autophagy flux improvement[J]. Mol Nutr Food Res, 2019, 63(24): 199-207.
[21] Joshi N, Walter JM, Misharin AV. Alveolar macrophages[J]. Cell Immunol, 2018, 330: 86-90.
[22] Nagai J, Balestrieri B, Fanning LB, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation[J]. J Clin Invest, 2019, 129(12): 5169-5186.
[23] Roquilly A, Jacqueline C, Davieau M, et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis[J]. Nat Immunol, 2020, 21(6): 636-648.
[24] Kang MJ, Jo SG, Kim DJ, et al. NLRP3 inflammasome mediates IL-1β production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice[J]. Immunology, 2017, 150(4): 495-505.
[25] Luo YP, Jiang L, Kang K, et al. Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury involving heme oxygenase-1[J]. Int Immunopharmacol, 2014, 20(1): 4-32.
[1] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[2] 张栌丹,丁晓玲,崔舒悦,程晨,魏福兰,丁刚. 牙周膜干细胞调节巨噬细胞功能的体外研究[J]. 山东大学学报 (医学版), 2021, 59(3): 35-40.
[3] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[4] 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 75-79.
[5] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[6] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
[7] 杨珍,张艳敏,王倩倩,陈惠敏,冯强,周少英. 微小RNA-103及RNA-107表达与120例脓毒症患者临床特征及预后的关联分析[J]. 山东大学学报 (医学版), 2020, 58(12): 77-85.
[8] 王波,薛江,刘爱虹,翟蕊蕊,王一彪. 雷帕霉素调控巨噬细胞表型改善肺动脉高压[J]. 山东大学学报 (医学版), 2018, 56(4): 51-57.
[9] 张同超,王志萍. 二硫化碳通过改变卵巢黄体巨噬细胞极化和功能导致胚胎植入障碍[J]. 山东大学学报 (医学版), 2018, 56(2): 80-87.
[10] 陈意坤,王克涛,王华阳,邵倩倩,谈万业,宋晓彬,曲迅,魏奉才. KIF4A对巨噬细胞血管生成相关因子表达的调节作用[J]. 山东大学学报(医学版), 2017, 55(1): 39-43.
[11] 杨延军,梁静,李芳,杜令席. 常山酮对小鼠子宫内膜异位症巨噬细胞极化的调控作用[J]. 山东大学学报(医学版), 2016, 54(9): 26-31.
[12] 宗兆运,李霞,韩振龙,王显腾,郭春,张利宁,石永玉. 肿瘤相关巨噬细胞对肝癌细胞c-Met分子表达的影响[J]. 山东大学学报(医学版), 2016, 54(3): 14-18.
[13] 刘晓,刘志广,范志松,王媛,杨兴肖,孔洁羽,陈俊卓,刘俊霞. 严重脓毒症与脓毒性休克患者预后分析[J]. 山东大学学报(医学版), 2016, 54(10): 80-84.
[14] 赵璐, 孙俊波, 魏桂梅. MRP8通过NF-κB信号通路调控痛风细胞模型中IL-1β的表达[J]. 山东大学学报(医学版), 2015, 53(6): 44-47.
[15] 刘雷雷, 鞠云飞, 许文飞, 鞠远荣. 氯沙坦对大鼠内毒素性急性肺损伤的影响及可能机制[J]. 山东大学学报(医学版), 2015, 53(2): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[5] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[6] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[7] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[8] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[9] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[10] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .