山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (12): 77-85.doi: 10.6040/j.issn.1671-7554.0.2020.0110
杨珍1,张艳敏1,王倩倩1,陈惠敏1,冯强2,周少英1
YANG Zhen1, ZHANG Yanmin1, WANG Qianqian1, CHEN Huimin1, FENG Qiang2, ZHOU Shaoying1
摘要: 目的 评估血浆微小RNA-103(miR-103)和RNA-107(miR-107)对脓毒症患病死亡风险的预判,并探讨其与脓毒症患者疾病严重程度及预后有关联的因素。 方法 选取2016年1月至2019年6月接受治疗的脓毒症患者120例(脓毒症组),入院24 h之内收集血液样本;选取同期健康对照者120例(健康对照组),入组时收集血液样本,并分离血液样本中血浆。采用反转录-荧光定量聚合酶链式反应检测所有受试者血浆miR-103和miR-107的表达水平。采用酶联免疫吸附试剂盒检测脓毒症组血浆中某些炎症因子的表达水平。收集脓毒症组临床指标并计算其28 d死亡率。采用受试者工作曲线(ROC)对临床辅助诊断的预判分析,采用Coxs回归模型分析脓毒血症死亡的关联因素。 结果 miR-103和miR-107在脓毒症组表达水平相比健康对照组均降低,且可作为脓毒症临床诊断的辅助指标,其曲线下面积(AUC)分别为0.893(95%CI:0.854~0.933)及0.941(95%CI:0.913~0.968)。脓毒症组miR-103和miR-107表达水平与急性生理和慢性健康状态II评分、序贯器官功能衰竭评分、血清肌酐、C-反应蛋白、肿瘤坏死因子-α、白介素-1β、白介素-6及白介素-8均呈负相关,与白蛋白呈正相关。此外,miR-103和miR-107在脓毒症死亡患者中表达水平较脓毒症存活患者降低。多元Coxs回归分析结果显示,miR-103表达是预测脓毒症组28 d死亡率的独立因素。 结论 miR-103和miR-107低表达与脓毒症相关,并与脓毒症患者疾病严重程度及28 d死亡率相关。
中图分类号:
[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. [2] Tiru B, DiNino EK, Orenstein A, et al. The economic and humanistic burden of severe sepsis [J]. Pharmacoeconomics, 2015, 33(9): 925-937. [3] Howell MD, Davis AM. Management of sepsis and septic shock [J]. JAMA, 2017, 317(8): 847-848. [4] Verdonk F, Blet A, Mebazaa A. The new sepsis definition: limitations and contribution to research and diagnosis of sepsis [J]. Curr Opin Anaesthesiol, 2017, 30(2): 200-204. [5] Finnerty JR, Wang WX, Hebert SS, et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases [J]. J Mol Biol, 2010, 402(3): 491-509. [6] Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways [J]. Mol Genet Metab, 2007, 91(3): 209-217. [7] Zhang W, Deng W, Wang Y. microRNA-103 promotes LPS-induced inflammatory injury by targeting c-Myc in HK-2 cells [J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2791-2799. [8] Hsieh CH, Rau CS, Jeng JC, et al. Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides [J]. J Biomed Sci, 2012, 19(1): 69. [9] Gao ZF, Ji XL, Gu J, et al. microRNA-107 protects against inflammation and endoplasmic reticulum stress of vascular endothelial cells via KRT1-dependent Notch signaling pathway in a mouse model of coronary atherosclerosis [J]. J Cell Physiol, 2019, 234(7): 12029-12041. [10] Lu Q, Ma Z, Ding Y, et al. Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-kappaB/p65 regulatory axis [J]. Nat Commun, 2019, 10(1): 2145. [11] Wang S, Zhang Z, Wang J, et al. MiR-107 induces TNF-alpha secretion in endothelial cells causing tubular cell injury in patients with septic acute kidney injury [J]. Biochem Biophys Res Commun, 2017, 483(1): 45-51. [12] Wang JX, Zhang XJ, Li Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD [J]. Circ Res, 2015, 117(4): 352-363. [13] Marialbert AH, Fabian LD, Maria PY, et al. Lung transcriptomics during protective ventilatory support in sepsis-induced acute lung injury [J]. PLoS One, 2015, 10(7): e0132296. [14] Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012 [J]. Intensive Care Med, 2013, 39(2): 165-228. [15] Knaus WA, Zimmerman JE, Wagner DP, et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system [J]. Crit Care Med, 1981, 9(8): 591-597. [16] Vincent JL, Moreno R, Takala J, et al. The SOFA(sepsis-related organ failure assessment)score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the european society of intensive care medicine [J]. Intensive Care Med, 1996, 22(7): 707-710. [17] 章春霞, 廉姜芳. MiR-103功能的研究进展[J]. 生命的化学, 2018, 38(1): 104-108. ZHANG Chunxia, LIAN Jiangfang. Research progress on the roles of miR-103[J]. Chemistry of life,2018, 38(1): 104-108. [18] Li G, Chen T, Zhu Y, et al. MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats [J]. Iran J Basic Med Sci, 2018, 21(3): 292-300. [19] 师灵灵, 韩艳秋, 任慧娟, 等. 脓毒症的病理生理机制研究进展 [J]. 中华医院感染学杂志, 2016, 26(8): 1914-1916. SHI Lingling, HAN Yanqiu, REN Huijuan, et al. Research advance of pathology and physiology of sepsis[J]. Chinese Journal of Nosocomiology, 2016, 26(8): 1914-1916. [20] 曾小娜, 尹连红, 许丽娜. 脓毒症性急性肾损伤发病机制[J]. 生理科学进展, 2020, 51(2): 44-48. |
[1] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[2] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[3] | 杨张杰,王宇欣,陈冬梅,赵帅,虎娜,马良宏,马会明. 枸杞籽油对小鼠睾丸支持细胞衰老模型的抗炎作用[J]. 山东大学学报 (医学版), 2020, 58(12): 15-22. |
[4] | 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53. |
[5] | 张栾,陈欧,栾云,朱晓波,陈元,王一彪. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22. |
[6] | 闫松鹤,高立芬,赵伟,王燕. 人牙根尖乳头细胞抑制人单核细胞THP-1活化及其分子机制[J]. 山东大学学报(医学版), 2017, 55(3): 49-53. |
[7] | 吴倩,倪阳,杨清锐,孙红胜. 双眼睑肿胀及双侧颌下包块1例——IgG4相关性疾病的诊断与思考[J]. 山东大学学报(医学版), 2017, 55(11): 93-96. |
[8] | 杨延军,梁静,李芳,杜令席. 常山酮对小鼠子宫内膜异位症巨噬细胞极化的调控作用[J]. 山东大学学报(医学版), 2016, 54(9): 26-31. |
[9] | 王庆石,陈允震,刘海春,武文亮,焦广俊,李晓峰,徐大霞. 髓核细胞分泌的炎症因子对后纵韧带成纤维细胞增殖与成骨能力的影响[J]. 山东大学学报(医学版), 2016, 54(6): 22-26. |
[10] | 李红志,刘静,宋岩,迟令懿,刘玉光. 利拉鲁肽对脊髓损伤修复作用的探讨[J]. 山东大学学报(医学版), 2016, 54(4): 1-5. |
[11] | 孙鹏飞,孟晓,张凯,黎莉. 抵抗素样分子 β在动脉粥样硬化斑块稳定性中的作用[J]. 山东大学学报(医学版), 2016, 54(3): 1-4. |
[12] | 袁冰,李冉冉,韩明勇. 恶性黑色素瘤调节肺组织微环境并促进肿瘤肺转移的实验研究[J]. 山东大学学报(医学版), 2016, 54(11): 13-18. |
[13] | 刘晓,刘志广,范志松,王媛,杨兴肖,孔洁羽,陈俊卓,刘俊霞. 严重脓毒症与脓毒性休克患者预后分析[J]. 山东大学学报(医学版), 2016, 54(10): 80-84. |
[14] | 李少伟, 刘宗正, 刘春霞, 张焱如, 周欢敏. 葡萄籽原花青素对小鼠脂肪肝模型缺血再灌注造成的急性肝损伤的保护作用[J]. 山东大学学报(医学版), 2015, 53(9): 41-46. |
[15] | 岑治宏, 郭予洁, 伍伟锋, 李丽萍, 周秋曦. 病毒性心肌炎小鼠调节性B细胞的变化[J]. 山东大学学报(医学版), 2015, 53(5): 31-35. |
|