山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (3): 26-34.doi: 10.6040/j.issn.1671-7554.0.2020.1557
刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅
LIU Shudan, ZHANG Feiyan, GUO Songlin, LIANG Xueyun, CHEN Dongmei
摘要: 目的 探讨氧化苦参碱(OMT)对缺氧缺血环境下角质形成细胞损伤的保护作用。 方法 选择体外培养的人角质形成细胞系HaCaT细胞,分为正常对照组(NC组)、模型组(HI组)、OMT低剂量组(0.05 g/L OMT组)、OMT高剂量组(0.1 g/L OMT组)4组。采用活细胞数量检测试剂盒CCK8检测HaCaT细胞增殖抑制率和活力,磷脂结合蛋白V(Annexin V)染色检测凋亡率,线粒体膜电位探针JC-1检测HaCaT细胞线粒体膜电位变化,2',7'-二氯荧光黄双乙酸盐(DCFH-DA)荧光探针法检测HaCaT细胞活性氧(ROS)水平,比色法检测HaCaT细胞中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和总抗氧化能力(T-AOC)活力, Western blotting检测凋亡基因天冬氨酸蛋白水解酶3(Caspase 3)、Cleaved-Caspase 3、B淋巴细胞瘤2(Bcl-2)及TGF-β1/SMAD3通路蛋白的表达量。 结果 与NC组相比,HI组HaCaT细胞Ki67阳性率[(13.52±2.89)%,P<0.001)[和线粒体膜电位降低(0.54±0.03,P<0.001),凋亡细胞数量(13.83±0.81,P<0.001)、ROS水平(164.31±16.93,P<0.001)升高,细胞中GSH-Px(0.96±0.05,P<0.001)、 SOD(0.67±0.06,P<0.001)和T-AOC(1.90±0.02,P<0.001)水平下降。 0.05 g/L OMT干预后,HaCaT细胞Ki67阳性率[(57.98±9.81)%,P<0.001)]和线粒体膜电位升高(0.81±0.04,P<0.001),凋亡细胞数量(8.10±0.53,P<0.001)、ROS水平(175.94±15.75,P<0.001)降低,细胞中GSH-Px(1.04±0.05,P<0.001)、SOD(0.86±0.04,P<0.001)和T-AOC(2.08±0.03,P<0.001)水平升高;Western blotting结果显示:HI处理使HaCaT细胞中TGF-β1信号通路蛋白TGF-β1(1.15±0.14,P=0.010)、 p-SMAD3(0.13±0.03,P=0.112)表达上调,凋亡信号蛋白Caspase-3(0.37±0.045,P=0.001)、Cleaved-Caspase 3(0.54±0.03,P=0.108)蛋白相对表达量较正常培养组均上调;添加0.05 g/L OMT处理后,与HI模型组相比,HaCaT细胞中TGF-β1(0.69±0.13,P=0.005)、 p-SMAD3(0.07±0.01,P<0.001)、 Caspase-3(0.21±0.041,P=0.006)、Cleaved-Caspase 3(0.29±0.054,P=0.016)蛋白相对表达量均下降,Bcl-2蛋白相对表达量升高(0.35±0.013, P=0.015); 0.1 g/L OMT组与0.05 g/L OMT组相比,除Ki67阳性率(P<0.001)、SOD活力(P<0.001)和Bcl-2表达(P=0.045)差异有统计学意义外,其他指标差异均无统计学意义(P>0.05)。 结论 0.05~0.1 g/L的OMT能够通过抑制TGFβ1/SMAD3通路来减轻缺氧缺血诱导的细胞线粒体功能障碍、氧化损伤和凋亡,从而保护角质形成细胞的存活。
中图分类号:
[1] Han G, Ceilley R. Chronic Wound Healing: a review of current management and treatments [J]. Adv Ther, 2017, 34(3): 599-610. [2] Liarte S, Bernabe-Garcia A, Nicolas FJ. Role of TGF-beta in skin chronic wounds: a Keratinocyte Perspective [J]. Cells, 2020, 9(2): 306. doi: 10.3390/cells9020306. [3] Xiao T, Yan Z, Xiao S, et al. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization [J]. Stem Cell Res Ther, 2020, 11(1): 232. doi: 10.1186/s13287-020-01755-y. [4] Edwin TC. Clinical management of non-healing wounds [J]. Nurs Stand, 2018, 32(29): 48-63. [5] 郑娟, 周梁. 复方苦参注射液在抗头颈部恶性肿瘤中的应用[J]. 复旦学报(医学版), 2016, 43(2): 236-240. ZHENG Juan,ZHOU Liang. Application in anti-head and neck carainoma of matrine compound injections [J]. Fudan University Journal of Medical Sciences, 2016, 43(2): 236-240. [6] Guan B, Chen R, Zhong M, et al. Protective effect of Oxymatrine against acute spinal cord injury in rats via modulating oxidative stress, inflammation and apoptosis [J]. Metab Brain Dis, 2020, 35(1): 149-157. [7] Lan X, Zhao J, Zhang Y, et al. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside [J]. Pharmacol Res, 2020, 151: 104541. doi: 10.1016/j.phrs.2019.104541. [8] Liu Y, Wang H, Liu N, et al. Oxymatrine protects neonatal rat against hypoxic-ischemic brain damage via PI3K/Akt/GSK3beta pathway [J]. Life Sci, 2020,254: 116444. doi: 10.1016/j.lfs.2019.04.070. [9] Wu J, Pan L, Jin X, et al. The role of oxymatrine in regulating TGF-beta1 in rats with hepatic fibrosis [J]. Acta Cir Bras, 2018, 33(3): 207-215. [10] Zhang W, Zhang J, Liu YK, et al. Cardioprotective effects of oxymatrine on isoproterenol-induced heart failure via regulation of DDAH/ADMA metabolism pathway in rats [J]. Eur J Pharmacol, 2014(12), 745: 29-35. [11] Nauta TD, Hinsbergh VW, Koolwijk P. Hypoxic signaling during tissue repair and regenerative medicine [J]. Int J Mol Sci, 2014, 15(11): 19791-19815. [12] Goldberg SR, Diegelmann RF. What makes wounds chronic [J]. Surg Clin North Am, 2020, 100(4): 681-693. [13] Huang Y, Li X, Zhang X, et al. Oxymatrine ameliorates memory impairment in diabetic rats by regulating oxidative stress and apoptosis: involvement of NOX2/NOX4 [J]. Oxid Med Cell Longev, 2020, 2020: 3912173. doi: 10.1155/2020/3912173. [14] Wu B, Yue H, Zhou GH, et al. Protective effects of oxymatrine on homocysteine-induced endothelial injury: Involvement of mitochondria-dependent apoptosis and Akt-eNOS-NO signaling pathways [J]. Eur J Pharmacol, 2019, 864: 172717. doi: 10.1016/j.ejphar.2019.172717. [15] Zhang X, Jiang W, Zhou AL, et al. Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3beta signaling pathway [J]. World J Gastroenterol, 2017, 23(21): 3839-3849. [16] Lee JH, Mellado-Gil JM, Bahn YJ, et al. Protection from beta-cell apoptosis by inhibition of TGF-beta/Smad3 signaling [J]. Cell Death Dis, 2020, 11(3): 184. doi: 10.1038/s41419-020-2365-8. [17] Zhang T, Wang XF, Wang ZC, et al. Current potential therapeutic strategies targeting the TGF-beta/Smad signaling pathway to attenuate keloid and hypertrophic scar formation [J]. Biomed Pharmacother, 2020, 129: 110287. doi:10.1016/j.biopha.2020.110287. [18] Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-beta family in wound healing, burns and scarring: a review [J]. Int J Burns Trauma, 2012, 2(1): 18-28. [19] Ashcroft GS, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response [J]. Nat Cell Biol, 1999, 1(5): 260-266. [20] Liu K, Gao Z, Wu X, et al. Knocking out Smad3 favors allogeneic mouse fetal skin development in adult wounds [J]. Wound Repair Regen, 2014, 22(2): 265-271. [21] Li F, Bian L, Iriyama S, et al. Smad7 ameliorates TGF-beta-mediated skin inflammation and associated wound healing defects but not susceptibility to experimental skin carcinogenesis [J]. J Invest Dermatol, 2019, 139(4): 940-950. [22] Fekrazad R, Sarrafzadeh A, Kalhori KAM, et al. Improved wound remodeling correlates with modulated TGF-beta expression in skin diabetic wounds following combined red and infrared photobiomodulation treatments [J]. Photochem Photobiol, 2018, 94(4): 775-779. [23] Song J, Shi W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-beta [J]. Acta Biochim Biophys Sin(Shanghai), 2018, 50(1): 91-97. [24] Ishikawa F, Kaneko E, Sugimoto T, et al. A mitochondrial thioredoxin-sensitive mechanism regulates TGF-beta-mediated gene expression associated with epithelial-mesenchymal transition [J]. Biochem Biophys Res Commun, 2014, 443(3): 821-827. [25] Zhang F, Ren T, Wu J. TGF-beta1 induces apoptosis of bone marrow-derived mesenchymal stem cells via regulation of mitochondrial reactive oxygen species production [J]. Exp Ther Med, 2015, 10(3): 1224-1228. [26] 严俊, 余舒莹, 王萍萍, 等. 苦参碱生物黏附凝胶对家兔口腔溃疡的疗效研究[J]. 中华危重症医学杂志(电子版), 2017, 10(2): 98-102. YAN Jun, YU Shuying, WANG Pingping, et al. Effect of matrine bioadhesive gel for oral ulcers in rabbits [J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2017, 10(2): 98-102. |
[1] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[2] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
[3] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[4] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[5] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[6] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[7] | 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16. |
[8] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[9] | 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5. |
[10] | 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24. |
[11] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
[12] | 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62. |
[13] | 向琳,陈腊梅,王婧雯,李海铭,李浩宇,王菊,范玉琛,王凯. 30名健康志愿者饮用饮久舒对肝代谢酶的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 81-85. |
[14] | 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47. |
[15] | 王冰玉,杨阳,晁岚. TOLL样受体4在15例子宫腺肌病中的表达及作用[J]. 山东大学学报 (医学版), 2020, 58(6): 47-52. |
|