您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (1): 1-5.doi: 10.6040/j.issn.1671-7554.0.2021.0275

• 基础医学 •    下一篇

硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制

黄辉宁1,2,杜娟娟2,孙燚2,侯应龙2,高梅1,2   

  1. 1.山东中医药大学第二临床医学院, 山东 济南 250001;2.山东第一医科大学第一附属医院心血管内科, 山东 济南 250014
  • 发布日期:2022-01-08
  • 通讯作者: 高梅. E-mail:gaomei0217@163.com
  • 基金资助:
    国家自然科学基金(81770334);山东省千佛山医院国家自然科学基金培育基金(QYPY2020NSFC1012)

Hydrogen sulfide alleviates acute obstructive sleep apnea-induced atrial fibrillation by regulating oxidative stress through glutaredoxin-1

HUANG Huining1,2, DU Juanjuan2, SUN Yi2, HOU Yinglong2, GAO Mei1,2   

  1. 1. The Second Clinical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    2. Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, China
  • Published:2022-01-08

摘要: 目的 探讨硫化氢(H2S)减轻急性阻塞性睡眠呼吸暂停(OSA)诱发房颤的机制。 方法 硫氢化钠(NaHS)作为外源性H2S供体,8~10周龄健康成年雄性SD大鼠24只,体质量320~360 g,随机分为对照组、OSA诱发房颤组、NaHS+OSA组和氯化镉+NaHS+OSA组,每组6只。按照既往文献构建OSA诱发房颤模型,实验结束后处死大鼠,留取左心耳组织。采用免疫荧光、ELISA法检测左心耳谷氧还蛋白-1的表达水平;采用硫代巴比妥酸法检测左心耳丙二醛(MDA)含量。 结果 与OSA组相比,NaHS+OSA组房颤诱发次数减少、房颤持续时间缩短(P<0.05);与对照组相比,OSA组左心耳谷氧还蛋白-1表达减少,MDA含量增加,应用NaHS后,NaHS+OSA组谷氧还蛋白-1表达水平较OSA组增加,MDA含量降低(P<0.01),在NaHS基础上应用谷氧还蛋白-1抑制剂氯化镉后,氯化镉+NaHS+OSA组MDA含量增加(P<0.01),H2S减轻OSA诱发房颤的作用消失。 结论 外源性H2S减轻急性OSA诱发房颤,可能是通过上调心肌细胞谷氧还蛋白-1表达从而减轻心肌细胞氧化应激。

关键词: 心房颤动, 阻塞性睡眠呼吸暂停, 硫化氢, 谷氧还蛋白-1, 氧化应激

Abstract: Objective To explore the mechanism of hydrogen sulfide(H2S)alleviating atrial fibrillation(AF)induced by acute obstructive sleep apnea(OSA). Methods Sodium hydrosulfide(NaHS)was used as exogenous H2S donor, and 24 healthy adult male SD rats(aged 8-10 weeks)weighing 320 g to 360g were randomly divided into control group, OSA-induced AF group, NaHS+OSA group and cadmium chloride+NaHS+OSA group, with 6 in each group. The model of AF induced by OSA was established according to previous literature. The rats were sacrificed and left atrial appendages were collected. The expression of glutaredoxin-1 was detected with immunofluorescence and ELISA, and the content of malondialdehyde(MDA)was detected with thiobarbituric acid. Results Compared with the OSA group, the NaHS+OSA group had decreased frequency of AF and shortened duration of AF(P<0.05). Compared with control group, the OSA group had decreased expression of glutaredoxin-1 but increased MDA content. After NaHS was used, the expression of glutaredoxin-1 increased but the MDA content decreased compared with the OSA group(P<0.01). After cadmium chloride was used, the MDA content increased(P<0.01), and the effect of H2S on alleviating OSA-induced AF disappeared. Conclusion Exogenous application of H2S alleviate acute OSA-induced AF by regulating oxidative stress through glutaredoxin-1.

Key words: Atrial fibrillation, Obstructive sleep apnea, Hydrogen sulfide, Glutaredoxin-1, Oxidative stress

中图分类号: 

  • R541.7
[1] Santhanakrishnan R, Wang N, Larson MG, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction [J]. Circulation, 2016, 133(5): 484-492.
[2] Adderley NJ, Nirantharakumar K, Marshall T. Risk of stroke and transient ischaemic attack in patients with a diagnosis of resolved atrial fibrillation: retrospective cohort studies [J]. BMJ, 2018, 361:k1717. doi: 10.1136/bmj.k1717.
[3] Serpytis R, Navickaite A, Serpytiene E, et al. Impact of atrial fibrillation on cognitive function, psychological distress, quality of life, and impulsiveness [J]. Am J Med, 2018, 131(6): 703.
[4] Shantha G, Pelosi F, Morady F. Relationship between obstructive sleep apnoea and AF [J]. Arrhythm Electrophysiol Rev, 2019, 8(3):180-183.
[5] Linz B, Hohl M, Lang L, et al. Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model [J]. Heart Rhythm, 2021, 18(3): 455-464.
[6] Bazan V, Vicente I, Lozano L, et al. Previously undetected obstructive sleep apnea in patients with new-onset atrial fibrillation [J]. Am J Cardiol, 2021, 138:46-52. doi: 10.1016/j.amjcard.2020.09.058.
[7] Linz D, McEvoy RD, Cowie MR, et al. Associations of obstructive sleep apnea with atrial fibrillation and continuous positive airway pressure treatment: a review [J]. JAMA Cardiol, 2018, 3(6): 532-540.
[8] Goudis CA, Ketikoglou DG. Obstructive sleep and atrial fibrillation: pathophysiological mechanisms and therapeutic implications [J]. Int J Cardiol, 2017, 230: 293-300. doi: 10.1016/j.ijcard.2016.12.120.
[9] Antonopoulos AS, Goliopoulou A, Oikonomou E, et al. Redox state in atrial fibrillation pathogenesis and relevant therapeutic approaches [J]. Curr Med Chem, 2019, 26(5): 765-779.
[10] Donnarumma E, Trivedi RK, Lefer DJ. Protective actions of H2S in acute myocardial infarction and heart failure [J]. Compr Physiol, 2017, 7(2): 583-602.
[11] Pei J, Wang F, Pei S, et al. Hydrogen sulfide promotes cardiomyocyte proliferation and heart regeneration via ROS scavenging [J]. Oxid Med Cell Longev, 2020, 2020: 1412696. doi: 10.1155/2020/1412696.
[12] Gao M, Zhang L, Scherlag BJ, et al. Low-level vagosympathetic trunk stimulation inhibits atrial fibrillation in a rabbit model of obstructive sleep apnea [J]. Heart Rhythm, 2015, 12(4): 818-824.
[13] Iwasaki YK, Kato T, Xiong F, et al. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model [J]. J Am Coll Cardiol, 2014, 64(19): 2013-2023.
[14] Beltowski J. Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: an overview [J]. Methods Mol Biol, 2019, 2007: 1-8. doi: 10.1007/978-1-4939-9528-8_1.
[15] Kang SC, Sohn EH, Lee SR. Hydrogen sulfide as a potential alternative for the treatment of myocardial fibrosis [J]. Oxid Med Cell Longev, 2020, 2020: 4105382. doi: 10.1155/2020/4105382.
[16] 曾奇虎, 翁静飞, 李小林, 等. 外源性硫化氢对2型糖尿病大鼠心肌纤维化及TGF-β1/Smads信号通路的影响[J]. 中国免疫学杂志, 2020, 36(6): 653-657. ZENG Qihu, WENG Jingfei, LI Xiaolin, et al. Effects of exogenous hydrogen sulfide on myocardial fibrosis and TGF-β1 /Smads signaling pathway in type 2 diabetic rats [J]. Chinese Journal of Immunology, 2020, 36(6): 653-657.
[17] 武韧, 常贵全, 孙凤起, 等. 硫化氢对糖尿病心肌病的保护作用[J]. 心血管病学进展, 2021, 42(1): 52-55. WU Ren, CHANG Guiquan, SUN Fengqi, et al. Protective effect of hydrogen sulfide in diabetic cardiomyopathy [J]. Advances in Cardiovascular Diseases, 2021, 42(1): 52-55.
[18] Salloum FN. Hydrogen sulfide and cardioprotection-Mechanistic insights and clinical translatability [J]. Pharmacol Ther, 2015, 152: 11-7. doi: 10.1016/j.pharmthera. 2015.04.004.
[19] Liang YF, Zhang DD, Yu XJ, et al. Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension [J]. Toxicol Lett, 2017, 270: 62-71. doi: 10.1016/j.toxlet.2017.02.004.
[20] Citi V, Piragine E, Testai L, et al. The role of hydrogen sulfide and H2S-donors in myocardial protection against ischemia/reperfusion injury [J]. Curr Med Chem, 2018, 25(34): 4380-4401.
[21] 徐明星, 刘文秀, 梁雨亭, 等. 硫化氢在心血管疾病中的研究进展[J]. 中国现代医学杂志, 2020, 30(21): 34-38. XU Mingxing, LIU Wenxiu, LIANG Yuting, et al. Recent research of H2S and autophagy in cardiovascular diseases [J]. China Journal of Modern Medicine, 2020, 30(21): 34-38.
[22] Watts M, Kolluru GK, Dherange P, et al. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation [J]. Redox Biol, 2021, 38:101817. doi: 10.1016/j.redox.2020.101817.
[23] Xue X, Ling X, Xi W, et al. Exogenous hydrogen sulfide reduces atrial remodeling and atrial fibrillation induced by diabetes mellitus via activation of the PI3K/Akt/eNOS pathway [J]. Mol Med Rep, 2020, 22(3): 1759-1766.
[24] Cofta S, Winiarska HM, Plociniczak A, et al. Oxidative stress markers and severity of obstructive sleep apnea [J]. Adv Exp Med Biol, 2019, 1222:27-35. doi: 10.1007/5584_2019_433.
[25] 李春兰, 裴丽娟, 侯鹏. 心房颤动相关的生物学标记物 [J]. 中国心血管杂志, 2020, 25(4):397-400.
[26] Sanderson JE, Fang F, Lu M, et al. Obstructive sleep apnoea, intermittent hypoxia and heart failure with a preserved ejection fraction [J]. Heart, 2021, 107(3):190-194.
[27] Samman Tahhan A, Sandesara PB, Hayek SS, et al. Association between oxidative stress and atrial fibrillation [J]. Heart Rhythm, 2017, 14(12):1849-1855.
[28] Karam BS, Chavez-Moreno A, Koh W, et al. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes [J]. Cardiovasc Diabetol, 2017, 16(1):120. doi: 10.1186/s12933-017-0604-9.
[29] Liu T, Zhao H, Li J, et al. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits [J]. Cardiovasc Ther, 2014, 32(4):178-183.
[30] Li JY, He Y, Ke HH, et al. Plasma oxidative stress and inflammatory biomarkers are associated with the sizes of the left atrium and pulmonary vein in atrial fibrillation patients [J]. Clin Cardiol, 2017, 40(2):89-94.
[31] Burns M, Rizvi SHM, Tsukahara Y, et al. Role of glutaredoxin-1 and glutathionylation in cardiovascular diseases [J]. Int J Mol Sci, 2020, 21(18). doi: 10.3390/ijms21186803.
[32] Matsui R, Ferran B, Oh A, et al. Redox regulation via glutaredoxin-1 and protein s-glutathionylation [J]. Antioxid Redox Signal, 2020, 32(10):677-700.
[33] Han J, Weisbrod RM, Shao D, et al. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells [J]. Redox Biol, 2016, 9:306-19. doi: 10.1016/j.redox.2016.09.003.
[1] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[2] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[3] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[4] 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24.
[5] 向琳,陈腊梅,王婧雯,李海铭,李浩宇,王菊,范玉琛,王凯. 30名健康志愿者饮用饮久舒对肝代谢酶的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 81-85.
[6] 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34.
[7] 黄柏松,丛洪良. 1 430例中年中危血栓栓塞风险心房颤动抗凝治疗的方案[J]. 山东大学学报 (医学版), 2021, 59(10): 49-67.
[8] 李艳,孙凤娇,张天然,王雨心,张正铎,高希宝. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报 (医学版), 2020, 58(5): 98-106.
[9] 刘东路,王曦敏,李展,杜娟娟,李建华,马神洲,侯应龙. LncRNA056298通过影响生长相关蛋白43的表达介导射频消融犬的神经重构[J]. 山东大学学报 (医学版), 2020, 58(5): 27-37.
[10] 郭静, 张宇,杨玉娟,孙月眉,刘丽萍,宋西成. 气道管理流程在儿童阻塞性睡眠呼吸暂停低通气综合征患者加速康复中的应用[J]. 山东大学学报 (医学版), 2019, 57(9): 54-58.
[11] 刘崇东,娄彤,董靖. 子宫内膜异位症恶变[J]. 山东大学学报 (医学版), 2019, 57(6): 27-32.
[12] 李建华,李展,贾晓萌,杜娟娟,马神洲,刘东路,张勇,张玉娇,侯应龙. TCONS_00016478 通过PGC1-α/ PPARγ信号通路影响实验性房颤兔心房肌能量代谢重构的机制[J]. 山东大学学报 (医学版), 2019, 57(4): 1-8.
[13] 张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞,方雨晴,刘小民,马高亭,张小雨,张霄,王敏,李秀华. 艾地苯醌联合治疗帕金森病疗效的临床观察[J]. 山东大学学报 (医学版), 2019, 57(4): 34-41.
[14] 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26.
[15] 陈琳琳,衣少雷,王蔚宗,李展,张勇,张玉娇,任满意,解新星,刘同宝,侯应龙. 预测心房颤动患者射频消融术后复发的危险因素[J]. 山东大学学报 (医学版), 2019, 57(3): 49-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[2] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[3] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .
[4] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[5] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[6] 吴文振1, 郝恩魁1,程义伟1,解崔环2,孟彦3,苏国海1. 不同急性肺动脉高压模型的建立及其血流动力学转归的实验研究[J]. 山东大学学报(医学版), 2012, 50(3): 34 -39 .
[7] 韩巨1,孙燕1,张涛1,张新娟2,孙晋浩3. 缺血耐受大鼠局灶性脑梗死后血管再生的实验研究[J]. 山东大学学报(医学版), 2011, 49(3): 8 -12 .
[8] 王志宏,王中霞,刘超,欧阳兵,李峰,王文苹,吴超,季旭明. 西黄丸滴丸抗肿瘤作用及对免疫功能的影响[J]. 山东大学学报(医学版), 2013, 51(4): 18 -20 .
[9] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[10] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .