山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (3): 49-57.doi: 10.6040/j.issn.1671-7554.0.2018.179
• • 上一篇
陈琳琳1,衣少雷2,王蔚宗1,李展1,张勇1,张玉娇1,任满意1,解新星3,刘同宝2,侯应龙1
CHEN Linlin1, YI Shaolei2, WANG Weizong1, LI Zhan1, ZHANG Yong1, ZHANG Yujiao1,REN Manyi1, XIE Xinxing3, LIU Tongbao2, HOU Yinglong1
摘要: 目的 探讨心房颤动(房颤)导管射频消融术后复发的相关危险因素。 方法 选取行房颤射频消融术患者270例(房颤组),同时选取健康查体者100例(对照组)。收集两组临床基线资料和外周静脉血,检测生化学标志物和miRNA;术后随访12个月,根据房颤复发情况分为房颤术后复发组和术后未复发组,并进一步按照阵发性房颤和持续性房颤分为复发与未复发亚组进行分析。应用单因素分析及Logistic回归分析,筛选房颤术后复发相关的危险因素。比较房颤亚组中危险因素的ROC曲线下面积,判断预测因素准确性。 结果 单因素分析显示:与对照组相比,房颤组血浆miRNA-21、miRNA-133、 miRNA-150、 miRNA-206、 miRNA-328表达量差异均有统计学意义(P<0.05);与术后未复发组相比,房颤术后复发组房颤类型、术中电复律、病程时间、CHADS2评分、左房前后径(LAD)、左室射血分数、尿酸、血浆miRNA-21表达量差异有统计学意义(P<0.05)。Logistic回归分析显示:阵发性房颤中LAD(OR=1.187,P=0.031)、血浆miRNA-21表达量(OR=1.226,P=0.012)在复发与未复发亚组间差异有统计学意义;而在持续性房颤中,LAD(OR=1.125,P=0.035)、病程时间(OR=1.023,P=0.019)、血浆miRNA-21表达量(OR=1.177,P=0.032)在复发与未复发亚组间差异有统计学意义。阵发性房颤中以LAD为指标计算ROC曲线下面积(AUC)为0.750,综合血浆中miRNA-21表达量后AUC=0.844;持续性房颤中,综合LAD、病程时间及血浆miRNA-21表达量测得AUC亦具有一定的参考价值。 结论 LAD及血浆中miRNA-21表达量是预测阵发性与持续性房颤患者射频消融术后复发的独立危险因素,而病程时间是预测持续性房颤射频消融术后复发的独立危险因素。
中图分类号:
[1] Wilke T, Groth A, Mueller S, et al. Incidence and prevalence of atrial fibrillation:an analysis based on 8.3 million patients [J]. Europace, 2013, 15(4):486-493. [2] 周自强, 胡大一, 陈捷, 等. 中国心房颤动现状的流行病学研究[J]. 中华内科杂志, 2004, 43(7):491-494. ZHOU Ziqiang, HU Dayi, CHEN Jie, et al. An epidemiological survey of atrial fibrillation in China [J]. Chinese Journal of Internal Medicine, 2004, 43(7):491-494. [3] Tops LF, Schalij MJ, Bax JJ. Imaging and atrial fibrillation:the role of multimodality imaging in patient evaluation and management of atrial fibrillation [J]. Eur Heart J, 2010, 31(5):542-551. [4] Haegeli LM, Calkins H. Catheter ablation of atrial fibrillation:an update [J]. Eur Heart J, 2014, 35(36):2454-2459. [5] Calkins H, Kuck KH, Cappato R, et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation:recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design [J]. Europace, 2012, 14(4):528-606. [6] Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS [J]. Eur Heart J, 2016, 37(38):2893-2962. [7] Balk EM, Garlitski AC, Alsheikh-Ali AA, et al. Predictors of atrial fibrillation recurrence after radiofrequency catheter ablation:a systematic review [J]. J Cardiovasc Electrophysiol, 2010, 21(11):1208-1216. [8] Epicoco Md G, Sorgente Md PhD A. Predictors of atrial fibrillation recurrence after catheter ablation [J]. J Atr Fibrillation, 2014, 6(5):1016. [9] Guarnieri DJ, DiLeone RJ. MicroRNAs:a new class of gene regulators [J]. Ann Med, 2008, 40(3):197-208. [10] Shi KH, Tao H, Yang JJ, et al. Role of microRNAs in atrial fibrillation:new insights and perspectives [J]. Cell Signal, 2013, 25(11):2079-2084. [11] Adam O, Lohfelm B, Thum T, et al. Role of miR-21 in the pathogenesis of atrial fibrosis [J]. Basic Res Cardiol, 2012, 107(5):278. [12] Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation [J]. Circulation, 2010, 122(23):2378-2387. [13] Liu Z, Zhou C, Liu YZ, et al. The expression levels of plasma micoRNAs in atrial fibrillation patients [J]. PLoS One, 2012, 7(9):e44906. doi:10.1371/journal.pone.0044906. [14] Zhang YJ, Zheng SH, Geng YY, et al. MicroRNA profiling of atrial fibrillation in canines:miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1 [J]. PLoS One, 2015, 10(3):e0122674. doi:10.1371/journal.pone.0122674. [15] Cooley N, Cowley MJ, Lin RC, et al. Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease [J]. Physiol Genomics, 2012, 44(3):211-219. [16] Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation:mechanisms and translational potential [J]. Nat Rev Cardiol, 2015, 12(2):80-90. [17] McManus DD, Tanriverdi K, Lin H, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation(the miRhythm study)[J]. Heart Rhythm, 2015, 12(1):3-10. [18] Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation [J]. Circ Arrhythm Electrophysiol, 2010, 3(1):32-38. [19] McCready JW, Smedley T, Lambiase PD, et al. Predictors of recurrence following radiofrequency ablation for persistent atrial fibrillation [J]. Europace, 2011, 13(3):355-361. [20] DAscenzo F, Corleto A, Biondi-Zoccai G, et al. Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation: a meta-analysis [J]. Int J Cardiol, 2013, 167(5):1984-1989. [21] Moon J, Lee HJ, Kim JY, et al. Prognostic implications of right and left atrial enlargement after radiofrequency catheter ablation in patients with nonvalvular atrial fibrillation [J]. Korean Circ J, 2015, 45(4):301-309. [22] Earley MJ, Abrams DJ, Staniforth AD, et al. Catheter ablation of permanent atrial fibrillation:medium term results [J]. Heart, 2006, 92(2):233-238. [23] Gilad S, Meiri ET, Yogev Y, et al. Serum microRNAs are promising novel biomarkers [J]. PLoS One, 2008, 3(9):e3148. doi:10.1371/journal.pone.0003148. [24] Sardu C, Santamaria M, Paolisso G, et al. microRNA expression changes after atrial fibrillation catheter ablation [J]. Pharmacogenomics, 2015, 16(16):1863-1877. [25] 赵晟, 杨诺, 岳语喃, 等. 射频消融术改变心房颤动患者外周血微小RNA表达谱[J]. 中华老年心脑血管病杂志, 2015, 17(7):725-731. ZHAO Sheng, YANG Nuo, YUE Yunan, et al. Radiofrequency ablation of atrial fibrillation rebalances atrial ion current remodeling by regulating miRNAs [J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2015, 17(7):725-731. [26] 朱瓦力, 伍伟锋. 心房颤动患者心房组织中微小RNA-21和金属基质蛋白酶-2表达水平改变及意义[J]. 中华心律失常学杂志, 2011, 15(2):132-135. ZHU Wali, WU Weifeng. MicroRNA-21 and matrix metalloprotease-2 in patients with rheumatic valvular heart disease and atrial fibrillation [J]. Chinese Journal of Cardiac Arrhythmias, 2011, 15(2):132-135. [27] Barana A, Matamoros M, Dolz-Gaitón P, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current [J]. Circ Arrhythm Electrophysiol, 2014, 7(5):861-868. [28] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature, 2008, 456(7224):980-984. |
[1] | 姚雪,卢冉冉,孙淑玲,高翠平,肖茹,王书会. 风湿性心脏病患者瓣膜置换术后医院感染风险预测评分模型的构建[J]. 山东大学学报 (医学版), 2022, 60(6): 90-96. |
[2] | 杨丛品,罗卓野,许秀华,李爱民,郝桂敏. 河北省某医院体检3 512例育龄女性生育选择及压力现状[J]. 山东大学学报 (医学版), 2022, 60(4): 62-67. |
[3] | 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47. |
[4] | 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5. |
[5] | 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42. |
[6] | 司海朋,张文灿,李乐,周鑫. Kümmell's病的危险因素和诊治研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 25-32. |
[7] | 王纬,王凤琴,韩艳丽. 腹腔镜下右附件囊肿剥除术后发生心脏骤停1例[J]. 山东大学学报 (医学版), 2021, 59(11): 123-124. |
[8] | 黄柏松,丛洪良. 1 430例中年中危血栓栓塞风险心房颤动抗凝治疗的方案[J]. 山东大学学报 (医学版), 2021, 59(10): 47-56. |
[9] | 孙胜房,马会力,贾竹亭,李民涛. 车祸所致880例四肢开放性损伤并发早期感染的危险性因素分析[J]. 山东大学学报 (医学版), 2021, 59(1): 72-77. |
[10] | 陈擎仪,张烜,王娟,孙继伟,曹丹凤, 曹枫林. 妊娠期女性自杀意念的危险因素及其累积效应[J]. 山东大学学报 (医学版), 2021, 59(1): 91-94. |
[11] | 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47-52. |
[12] | 王春明,刘钦成,郭凌宏,廖彩仙. 胰十二指肠切除术后出血的危险因素及其治疗[J]. 山东大学学报 (医学版), 2019, 57(1): 81-86. |
[13] | 余之刚,周飞. 非哺乳期感染性乳腺脓肿诊疗策略[J]. 山东大学学报 (医学版), 2018, 56(9): 1-5. |
[14] | 王旭,张丹丹,郑兆磊,王珮竹,许勤勤,王显军,丁淑军,李秀君. 威海市发热伴血小板减少综合征与气象因素关系[J]. 山东大学学报 (医学版), 2018, 56(8): 114-120. |
[15] | 田忠艳,李玉倩,刘晓田,史园园,张海庆,张霞,千新玲,尹磊,赵景志,王重建. PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究[J]. 山东大学学报 (医学版), 2018, 56(7): 51-56. |
|