您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (7): 51-56.doi: 10.6040/j.issn.1671-7554.0.2017.1267

• • 上一篇    

PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究

田忠艳1,李玉倩2,刘晓田1,史园园1,张海庆1,张霞1,千新玲1,尹磊3,赵景志3,王重建1   

  1. 1.郑州大学公共卫生学院流行病学教研室, 河南 郑州 450001;2.郑州大学药学院临床药理学系, 河南 郑州 450001;3.河南省军区直属医院体检中心, 河南 郑州 450003
  • 发布日期:2022-09-27
  • 通讯作者: 李玉倩. E-mail:liyuqian0214@126.com
  • 基金资助:
    国家自然科学基金(81602925,81573243);国家重点研发计划“精准医学研究”重点专项(2016YFC0900803);河南省科技创新人才支持计划(164100510021);河南省高校科技创新人才支持计划(14HASTIT035);河南省医学科技攻关计划(201401002,201403002);郑州大学高端人才支持计划(ZDGD13001)

Relationship between PSMD6 gene rs831571 locus polymorphism and the susceptibility of T2DM: a case-control study

TIAN Zhongyan1, LI Yuqian2, LIU Xiaotian1, SHI Yuanyuan1, ZHANG Haiqing1, ZHANG Xia1, QIAN Xinling1, YIN Lei3, ZHAO Jingzhi3, WANG Chongjian1   

  1. 1. Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China;
    2. Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China;
    3. Department of Health Care, Military Hospital in Henan, Zhengzhou 450003, Henan, China
  • Published:2022-09-27

摘要: 目的 探讨PSMD6基因rs831571位点多态性与河南汉族人群2型糖尿病(T2DM)易感性的关系以及基因-环境危险因素的交互作用。 方法 研究对象来自“农村糖尿病、肥胖及生活方式”研究。从中选取T2DM患者1 052例,作为T2DM组,按年龄(±3岁)同性别进行1∶1匹配;选取非T2DM患者1 052例,作为对照组。使用SNPscanTM高通量SNP分型技术对PSMD6基因rs831571位点进行分型。采用Logistic回归分析基因多态性与T2DM的关联强度及PSMD6基因-环境危险因素对T2DM的交互作用。 结果 T2DM组和对照组PSMD6基因rs831571位点基因型频率分布差异有统计学意义(P<0.05)。调整相关影响因素后,rs831571位点TT(OR=0.623, 95%CI: 0.456~0.853)和CT+TT(OR=0.825, 95%CI: 0.685~0.995)基因型携带者T2DM易感性降低。联合作用结果显示,携带PSMD6突变基因型且中重度体力活动者或携带PSMD6突变基因型且BMI正常者,T2DM的患病风险降低,但PSMD6基因-体力活动以及PSMD6基因-BMI在T2DM的发生中没有交互作用(P>0.05)。 结论 PSMD6基因rs831571位点多态性与T2DM易感性有关,携带PSMD6突变基因型且中重度体力活动者或携带PSMD6突变基因型且BMI正常者,T2DM的患病风险降低,PSMD6基因-体力活动以及基因-BMI对T2DM的发生无交互作用。

关键词: 2型糖尿病, PSMD6基因多态性, 环境危险因素, 交互作用

Abstract: Objective To explore the relationship between PSMD6 gene rs831571 locus polymorphism and the susceptibility of type 2 diabetes mellitus(T2DM)in Henan Han population, and to assess interaction between PSMD6 gene rs831571 locus polymorphism and environmental risk factors. Methods The participants were derived from the Rural 山 东 大 学 学 报 (医 学 版)56卷7期 -田忠艳,等.PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究 \=-Diabetes, Obesity and Lifestyle(RuralDiab)study in China. A total of 1 052 patients with T2DM(T2DM group)and 1 052 participants without T2DM(control group)were included in the present study after a 1∶1 match based on the age and gender. A custom-by-design 2×48-Plcx SNPscanTM Kit was applied to determine the genotypes of PSMD6 gene rs831571 locus. Logistic regression model was performed to estimate the association between T2DM and PSMD6 gene polymorphism and evaluate the interaction of PSMD6 gene-environmental risk factors. Results Significant difference was observed in the genotype frequencies of PSMD6 gene rs831571 locus in T2DM and control groups(P<0.05). After adjusting smoking, drinking, etc, the genotypes TT(OR=0.623, 95%CI: 0.456-0.853)and CT+TT(OR=0.825, 95%CI: 0.685-0.995)of PSMD6 gene rs831571 locus polymorphism decreased the susceptibility of T2DM. Combined effects analysis revealed that mutant type of MSPD6 with normal BMI or moderate or severe physical activity could attenuate the risk of T2DM, but PSMD6 gene-physical activity and PSMD6 gene-BMI interaction analysis was of no statistical significance(P>0.05). Conclusion PSMD6 gene rs831571 locus polymorphism is associated with the susceptibility of T2DM. In addition, mutant type of PSMD6 with normal BMI or moderate or severe physical activity can attenuate the risk of T2DM. The interactions of PSMD6 gene-physical activity and PSMD6 gene-BMI on T2DM present no statistical significance.

Key words: Type 2 diabetes mellitus, PSMD6 gene polymorphism, Environmental risk factors, Interaction

中图分类号: 

  • R181
[1] Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function[J]. Nature, 2001, 414(6865): 788-791.
[2] NCD Risk Factor Collaboration(NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants[J]. Lancet, 2016, 387(10027): 1513-1530.
[3] IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the idf diabetes atlas: estimates for the year 2013[J]. Diabetes Res Clin Pract, 2015, 109(3): 461-465.
[4] Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-959.
[5] Guewo-Fokeng M, Sobngwi E, Atogho-Tiedeu B, et al. Contribution of the tcf7l2 rs7903146(c/t)gene polymorphism to the susceptibility to type 2 diabetes mellitus in cameroon[J]. J Diabetes Metab Disord, 2015, 14: 26. doi:10.1186/S40200-015-0148-2.
[6] Song M, Zhao F, Ran L, et al. The uyghur population and genetic susceptibility to type 2 diabetes: potential role for variants in cdkal1, jazf1, and igf1 genes[J]. OMICS, 2015, 19(4): 230-237.
[7] Gao K, Ren Y, Wang J, et al. Interactions between genetic polymorphisms of glucose metabolizing genes and smoking and alcohol consumption in the risk of type 2 diabetes mellitus[J]. Appl Physiol Nutr Metab, 2017, 42(12): 1316-1321.
[8] Look AHEAD Research Group. Prospective association of a genetic risk score and lifestyle intervention with cardiovascular morbidity and mortality among individuals with type 2 diabetes: the Look AHEAD randomised controlled trial[J]. Diabetologia, 2015, 58(8): 1803-1813.
[9] Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east asians[J]. Nat Genet, 2011, 44(1): 67-72.
[10] Balasubramanyam M, Sampathkumar R, Mohan V. Is insulin signaling molecules misguided in diabetes for ubiquitin-proteasome mediated degradation?[J]. Mol Cell Biochem, 2005, 275(1-2): 117-125.
[11] Bugliani M, Liechti R, Cheon H, et al. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction[J]. Mol Cell Endocrinol, 2013, 367(1-2): 1-10.
[12] Kim SJ, DeStefano MA, Oh WJ, et al. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8[J]. Molecular Cell, 2012, 48(6): 875-887.
[13] Kovsan J, Bluher M, Tarnovscki T, et al. Altered autophagy in human adipose tissues in obesity[J]. J Clin Endocrinol Metab, 2011, 96(2): E268- E277.
[14] Keaton JM, Cooke Bailey JN, Palmer ND, et al. A comparison of type 2 diabetes risk allele load between african americans and european americans[J]. Hum Genet, 2014, 133(12): 1487-1495.
[15] 国家“九五”攻关计划糖尿病研究协作组. 中国12个地区中老年人糖尿病患病率调查[J].中华内分泌代谢杂志, 2002, 18(4): 30-34. Diabetes Research Cooperation Group of National “the Ninth Five” Major Research Plan. A survey of diabetes prevalence in the middle-aged and elderly Chinese from 12 areas of China[J]. Chin J Endocrinol Metab, 2002, 18(4): 30-34.
[16] American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2009, 32(Suppl 1): S62-S67.
[17] Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death[J]. Dev Cell, 2008, 15(3): 344-357.
[18] Christian P, Sacco J, Adeli K. Autophagy: emerging roles in lipid homeostasis and metabolic control[J]. Biochim Biophys Acta, 2013, 1831(4): 819-824.
[19] Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period[J]. Nature, 2004, 432(7020): 1032-1036.
[20] Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in atg7-deficient mice[J]. J Cell Biol, 2005, 169(3): 425-434.
[21] 赵景志,李琳琳,庞超,等. 郑州地区2型糖尿病患者一级亲属遗传度分析[J].郑州大学学报(医学版), 2012, 47(2): 185-187. ZHAO Jingzhi, LI Linlin, PANG Chao, et al. Analysis of heritability in the first degree relatives of type 2 diabetes mellitus patients from Zhengzhou[J]. Journal of Zhengzhou University(Medical Science), 2012, 47(2): 185-187.
[22] Mihaescu R, Meigs J, Sijbrands E, et al. Genetic risk profiling for prediction of type 2 diabetes[J]. PLoS Curr, 2011, 3: RRN1208. doi: 10.1371/currents.RRN1208.
[23] 陈希.山东省成人糖尿病流行现况及其筛查的人体测量指标适宜切点分析[D].济南:山东大学, 2013.
[24] 张绍维,李鹏飞,孙文娟,等. 2型糖尿病患者遗传性病例对照研究[J].中国公共卫生, 2007, 23(12): 1463-1464. ZHANG Shaowei, LI Pengfei, SUN Wenjuan, et al. Case-control study on genetic factors of type 2 diabetes mellitus[J]. Chin J Public Health, 2007, 23(12): 1463-1464.
[25] Almgren P, Lehtovirta M, Isomaa B, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study[J]. Diabetologia, 2011, 54(11): 2811-2819.
[1] 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25.
[2] 郑凤杰,宋玉文,孙爱丽,潘喆,王殿辉,娄能俊,吕丽,庄向华,陈诗鸿. 糖尿病周围神经病变与肌少症的关联性[J]. 山东大学学报 (医学版), 2021, 59(6): 38-44.
[3] 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102.
[4] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[5] 龚茁,张敏敏,王志萍. 流产经历和子宫肌瘤家族史对子宫肌瘤患病风险的影响[J]. 山东大学学报(医学版), 2017, 55(9): 100-104.
[6] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[7] 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11.
[8] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
[9] 彭力,强晔,赵蕙琛,陈诗鸿,姚伟东,刘元涛. 2型糖尿病患者应用西格列汀的短期疗效及影响因素[J]. 山东大学学报(医学版), 2016, 54(8): 60-63.
[10] 林栋,管庆波. 2型糖尿病男性患者血清睾酮水平低下对非酒精性脂肪肝的影响[J]. 山东大学学报(医学版), 2016, 54(7): 33-37.
[11] 木哈达斯·吐尔逊依明,帕它木·莫合买提,托兰古丽·买买提库尔班. CDKAL1(rs10946398 C/A)基因多态性与2型糖尿病易感性关系Meta分析[J]. 山东大学学报(医学版), 2016, 54(2): 75-85.
[12] 于宁,高燕燕,咸玉欣,牛佳鹏,李莉,王静,曹彩霞. 艾塞那肽对2型糖尿病合并非酒精性脂肪肝患者肝脏脂肪含量及血清chemerin水平的影响[J]. 山东大学学报(医学版), 2016, 54(11): 51-55.
[13] 张莉,朱惠明,王艳梅,江堤,孙贤久,乐有林. 2型糖尿病患者腹胀与小肠细菌过度生长的关系[J]. 山东大学学报(医学版), 2016, 54(1): 45-47.
[14] 刘言训, 刘佳, 张涛, 王璐, 薛付忠, 王萍. 基于纵向监测队列的2型糖尿病与甲状腺结节的关联性[J]. 山东大学学报(医学版), 2015, 53(8): 83-86.
[15] 裴蕾蕾, 孙中华, 李哲, 赵文萍. 西格列汀联合大剂量胰岛素治疗2型糖尿病的临床观察[J]. 山东大学学报(医学版), 2015, 53(2): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!