您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (6): 82-86.doi: 10.6040/j.issn.1671-7554.0.2017.347

• • 上一篇    下一篇

健康管理人群2型糖尿病发病风险预测模型

苏萍1,2,杨亚超3,杨洋1,2,季加东1,2,阿力木·达依木1,2,李敏1,2,薛付忠1,2,刘言训1,2   

  1. 1.山东大学公共卫生学院生物统计学系, 山东 济南 250012;2.山东大学齐鲁生物医学大数据研究中心, 山东 济南 250012;3.威海市立医院健康体检科, 山东 威海 264200
  • 收稿日期:2017-04-20 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 刘言训. E-mail:liu-yx@sdu.edu.cn薛付忠. E-mail:xuefzh@sdu.edu.cn E-mail:liu-yx@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81273177)

Prediction models on the onset risks of type 2 diabetes among the health management population

SU Ping1,2, YANG Yachao3, YANG Yang1,2, JI Jiadong1,2, DAYIMU Alimu1,2, LI Min1,2, XUE Fuzhong1,2, LIU Yanxun1,2   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. Physical Examination Department, Weihai Municipal Hospital, Weihai 264200, Shandong, China
  • Received:2017-04-20 Online:2017-06-10 Published:2017-06-10

摘要: 目的 构建健康管理人群2型糖尿病3年发病风险预测模型。 方法 依托山东多中心健康管理纵向观察大数据库,选择20~75岁的基线未患2型糖尿病者构建队列。采用Cox比例风险回归构建2型糖尿病预测模型,以受试者工作特征曲线下面积(AUC)评价模型的预测效能,以十折交叉验证法检验模型的稳定性。 结果 随访期间共新发糖尿病1 624例,男性和女性的发病密度分别为15.00‰、10.83‰。男性预测模型最终纳入的变量包括年龄、体质量指数、空腹血糖、甘油三酯、谷丙转氨酶、白细胞计数。纳入女性预测模型的变量包括年龄、空腹血糖、甘油三酯、高密度脂蛋白、谷丙转氨酶。男性和女性预测模型的AUC分别为0.795(95%CI:0.764~0.827)和0.707(95%CI:0.654~0.759)。 结论 分性别建立的2型糖尿病发病风险预测模型在健康管理人群中均具有较好预测能力。

关键词: 2型糖尿病, Cox比例风险回归, 风险预测模型, 队列

Abstract: Objective To construct prediction models to estimate the risks of developing type 2 diabetes mellitus(T2DM)in 3 years among the health management population in mainland China. Methods Non-diabetic people aged 20 to 75 years at the baseline were chosen from Shandong Multi-center Longitudinal Cohort for Health Management to compose our cohort. Coxs proportional hazards regression model was adopted to build T2DM prediction model. The area under the receiver operating characteristic(ROC)curve(AUC)was used to evaluate the predictability of the model. Ten-fold cross-validation was adopted to test the stability of the model. Results During the follow-up of 3.68±2.8 years, 1,624 cases of new-onset diabetes occurred. The incidence density of male and female was 15.00‰ and 10.83‰, respectively. The risk factors for the male model included age, body mass index(BMI), fasting plasma glucose(FPG), triglyceride, alanine aminotransferase(ALT), and white blood cell(WBC)count. The risk factors 山 东 大 学 学 报 (医 学 版)55卷6期 -苏萍,等.健康管理人群2型糖尿病发病风险预测模型 \=-for the female model included age, FPG, triglyceride, high density lipoprotein cholesterol(HDL-C), and ALT. The AUC of the male model and female model was 0.795(95% CI: 0.764-0.827)and 0.707(95%CI: 0.654-0.759), respectively. Conclusion The male and female prediction models we constructed have high predictability and reliability among the health management population.

Key words: Cohort study, Coxs proportional hazards regression, Type 2 diabetes, Risk prediction model

中图分类号: 

  • R587.1
[1] Lu C, Sun W. Prevalence of diabetes in Chinese adults[J]. JAMA, 2014, 311(2): 199-200.
[2] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12): 1090-1101.
[3] Bhushan R, Elkindhirsch KE, Bhushan M, et al. Improved glycemic control and reduction of cardiometabolic risk factors in subjects with type 2 diabetes and metabolic syndrome treated with exenatide in a clinical practice setting[J]. Diabetes Technol Ther, 2009, 11(6): 353-359.
[4] Tuomilehto J, Lindstro MJ, Eriksson J, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance[J]. N Engl J Med, 2001, 344: 1343-1350.
[5] Park PJ, Griffin SJ, Sargeant L, et al. The performance of a risk score in predicting undiagnosed hyperglycemia[J]. Diabetes Care, 2002, 25: 984-988.
[6] Lindström J, Tuomilehto J. The Diabetes risk score: a practical tool to predict type 2 diabetes risk[J]. Diabetes Care, 2003, 26(3): 725-731.
[7] 江慧, 徐慧兰, 肖水源, 等. 3种糖尿病筛查问卷在农村居民中应用的效果评价[J]. 中南大学学报(医学版), 2012, 37(11): 1108-1111. JIANG Hui, XU Huilan, XIAO Shuiyuan, et al. Performance of 3 diabetes screening questionnaires for a rural sample in China[J]. Journal of Central South University(Medical Sciences), 2012, 37(11): 1108-1111.
[8] Glümer C, Carstensen B, Sandbæk A, et al. A danish diabetes risk score for targeted screening the inter99 study[J]. Diabetes Care, 2004, 27(3): 727-733.
[9] 董建军, 娄能俊, 辛颖, 等. 不同糖尿病筛查问卷在中国人群糖尿病普查中的价值评估[J]. 中华内分泌代谢杂志, 2009, 25(1): 64-65.
[10] Aekplakorn W, Bunnag P, Woodward M, et al. A risk score for predicting incident diabetes in the Thai population[J]. Diabetes Care, 2006, 29(29): 1872-1877.
[11] Gao WG, Dong YH, Pang ZC, et al. A simple Chinese risk score for undiagnosed diabetes[J]. Diabetic Medicine, 2010, 27(3): 274-281.
[12] 师正坤, 郭佳, Monica Parry, 等. 中国糖尿病风险评估工具的研究现状与进展[J]. 中国全科医学, 2015, 20: 2368-2372.
[13] 中国高血压防治指南修订委员会. 中国高血压防治指南(2010年修订版)[J]. 中国实用乡村医生杂志, 2012, 19(10): 1-15.
[14] 黎衍云, 李锐, 张胜年. 无症状糖尿病不同筛查方法效果评价[J]. 中国公共卫生, 2006, 22(6): 687-689. LI Yanyun, LI Rui, ZHANG Shengnian, et al. Evaluation on effect of screening method for undiagnosed diabetes[J]. Chinese Journal of Public Health, 2006, 22(6): 687-689.
[15] 王孝勇. 无症状2型糖尿病及糖尿病前期人群社区筛查策略研究[D]. 济南: 山东大学, 2011.
[16] 沈洪兵, 俞顺章, 徐耀初, 等. 危险因素记分法筛检无症状糖尿病及其评价[J]. 中华流行病学杂志, 1999, 20(2): 114-117.
[17] 雷先阳. 农村社区2型糖尿病筛查及初步干预研究[D]. 长沙: 中南大学, 2013.
[18] Lim NK, Park SH, Choi SJ, et al. A risk score for predicting the incidence of type 2 diabetes in a middle-aged Korean cohort: the Korean genome and epidemiology study[J]. Circ J, 2012, 76(8): 1904-1910.
[19] Demmer RT, Jr JD, Desvarieux M. Periodontal disease and incident type 2 diabetes: results from the First National Health and Nutrition Examination Survey and its epidemiologic follow-up study[J]. Diabetes Care, 2008, 31(7): 1373-1379.
[20] Yoriko H, Yasuji A, Kazumi S, et al. Development of a screening score for undiagnosed diabetes and its application in estimating absolute risk of future type 2 Diabetes in Japan: Toranomon Hospital Health Management Center Study 10(TOPICS 10)[J]. J Clin Endocrinol Metab, 2013, 98(3): 1051-1060.
[21] 王忠东. 谷丙转氨酶和尿酸等指标检测在2型糖尿病中的意义分析[J]. 糖尿病新世界, 2016, 19(12): 67-68.
[22] 米生权. 中国成人个体糖尿病发病风险预测模型的建立及验证[D]. 北京: 中国疾病预防控制中心, 2011.
[23] Xie J, Hu D, Yu D, et al. A quick self-assessment tool to identify individuals at high risk of type 2 diabetes in the Chinese general population[J]. J Epidemiol Community Health, 2010, 64(3): 236-242.
[24] Xin Z, Yuan J, Hua L, et al. A simple tool detected diabetes and prediabetes in rural Chinese[J]. J Clin Epidemiol, 2010, 63(9): 1030-1035.
[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[2] 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128.
[3] 刘娅飞,邢娉,徐秀琴,杨淑芳,刘言训,袁中尚,薛付忠. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017, 55(6): 30-36.
[4] 李吉庆,赵焕宗,宋炳红,张理纯,李向一,陈亚飞,王萍,薛付忠. 基于健康管理队列的心血管事件风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 56-60.
[5] 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65.
[6] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[7] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[8] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[9] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[10] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[11] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[12] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[13] 柳晓涓,蒋正,康凤玲,周苗,林伟强,薛付忠. 中性粒细胞计数与非酒精性脂肪肝关联性的前瞻性队列研究[J]. 山东大学学报(医学版), 2017, 55(6): 119-123.
[14] 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11.
[15] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!