您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (6): 61-65.doi: 10.6040/j.issn.1671-7554.0.2017.357

• • 上一篇    下一篇

基于健康管理队列的高血压风险预测模型

于涛1,2,刘焕乐3,冯新4,徐付印4,陈亚飞1,2,薛付忠1,2,张成琪5   

  1. 1.山东大学公共卫生学院生物统计学系, 山东 济南 250012;2.山东大学齐鲁生物医学大数据研究中心, 山东 济南 250012;3.胜利油田中心医院保健科, 山东 东营 257000;4.胜利油田中心医院健康管理中心, 山东 东营 257000;5.山东大学附属千佛山医院健康管理中心, 山东 济南 250014
  • 收稿日期:2017-04-26 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 刘焕乐. E-mail:zxyylhl@163.com张成琪. E-mail:chengqizhangsd@126.com E-mail:zxyylhl@163.com
  • 基金资助:
    国家自然科学基金(81273082)

A hypertension risk prediction model based on health management cohort

YU Tao1,2, LIU Huanle3, FENG Xin4, XU Fuyin4, CHEN Yafei1,2, XUE Fuzhong1,2, ZHANG Chengqi5   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. Department of Health Care, Shengli Oilfield Central Hospital, Dongying 257000, Shandong, China;
    4. Health Management Center, Shengli Oilfield Central Hospital, Dongying 257000, Shandong, China;
    5. Health Management Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
  • Received:2017-04-26 Online:2017-06-10 Published:2017-06-10

摘要: 目的 基于健康管理队列,构建高血压风险预测模型。 方法 依托山东多中心健康管理纵向观察队列,排除基线高血压、心脑血管疾病、血肌酐>177 μmol/L、年龄<20岁者,构建高血压研究队列(共22 177人,其中男12 044人,女10 133人),分性别采用Cox回归建立高血压预测模型,并评价模型预测效果。 结果 观察期间新发高血压4 571例,发病密度为62.84/1 000人年。最终男性模型中的变量包括年龄、体质量指数、收缩压、舒张压、空腹血糖和红细胞压积,ROC曲线下面积(AUC)为0.821(95%CI:0.812~0.830);女性模型中的变量包括年龄、体质量指数、收缩压、红细胞计数和高密度脂蛋白,AUC为0.818(95%CI:0.806~0.828)。十折交叉验证结果显示,男女AUC分别为0.819(95%CI:0.810~0.828)、0.814(95%CI:0.803~0.825)。 结论 该模型具有较好的预测能力,可用来识别高血压高危个体。

关键词: 健康管理队列, 高血压, 预测模型

Abstract: Objective To establish a prediction model for the risk of hypertension based on health management cohort. Methods Based on Shandong Multi-center Longitudinal Cohort for Health Management and after exclusion of participants with baseline hypertension, cardiovascular and cerebrovascular diseases and other related diseases, a cohort with 22 177 subjects, including 12 044 males and 10 133 females, was established. Cox regression was used to construct prediction models for hypertension in males and females. The effect of model prediction was evaluated. Results A total of 4 571 new hypertention cases were observed, resulting in a cumulative incidence of 62.84/1 000 person years. The risk factors of the model for males included age, body mass index, systolic pressure, diastolic pressure, fasting blood-glucose and hematocrit. The estimated AUC of the model was 0.821(95%CI: 0.812-0.830). In the model for females, the risk factors included age, body mass index, systolic pressure, red blood cell and high density lipoprotein cholesterol. The estimated AUC of the model was 0.818(95%CI: 0.806-0.828). Ten-fold cross validation showed that the estimated AUC of the model for males was 0.819(95%CI: 0.810-0.828)and 0.814(95%CI: 0.803-0.825) 山 东 大 学 学 报 (医 学 版)55卷6期 -于涛,等.基于健康管理队列的高血压风险预测模型 \=-for females. Conclusion The model has good prediction ability and could be used to identify individuals with high risk of hypertension.

Key words: Health management cohort, Prediction model, Hypertension

中图分类号: 

  • R544.1
[1] Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data[J]. Lancet, 2005, 365(9455): 217-223.
[2] 刘力生.中国高血压防治指南 2010[J]. 中华高血压杂志, 2011, 19(8): 701-708. Liu Lisheng. 2010 Chinese guidelines for the management of hypertension[J]. Chinese Journal of Hypertension, 2011, 19(8): 701-708.
[3] Wang R, Zhao Y, He X, et al. Impact of hypertension on health-related quality of life in a population-based study in Shanghai, China[J]. Public Health, 2009, 123(8): 534-539.
[4] Gao Y, Chen G, Tian H, et al. Prevalence of hypertension in China: a cross-sectional study[J]. PLoS One, 2013, 8(6): e65938. doi: 10.1371/journal.pone.0065938
[5] Wang J, Zhang L, Wang F, et al. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey[J]. Am J Hypertens, 2014, 27(11): 1355-1361.
[6] Liang Y, Liu R, Du S, et al. Trends in incidence of hypertension in Chinese adults, 1991—2009: The China Health and Nutrition Survey[J]. Int J Cardiol, 2014, 175(1): 96-101.
[7] Parikh NI, Pencina MJ, Wang TJ, et al. A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study[J]. Ann Intern Med, 2008, 148(2): 102-110.
[8] Chien KL, Hsu HC, Su TC, et al. Prediction models for the risk of new-onset hypertension in ethnic Chinese in Taiwan[J]. J Hum Hypertens, 2011, 25(5): 294-303.
[9] 李国奇, 刘静, 王薇, 等. 中国 35~64 岁人群 15 年高血压发生风险预测研究[J]. 中华高血压杂志, 2014, 22(10): 1000. LI Guoqi, LIU Jing, WANG Wei, et al. Prediction models for the 15 years risk of new-onset hypertension in Chinese people aged from 35 to 64 years old[J]. J Hypertens, 2014, 22(10): 1000.
[10] Kshirsagar AV, Chiu Y, Bomback AS, et al. A hypertension risk score for middle-aged and older adults[J]. J Clin Hypertens, 2010, 12(10): 800-808.
[11] Zhang M, Zhao Y, Sun H, et al. Effect of dynamic change in body mass index on the risk of hypertension: results from the Rural Chinese Cohort Study[J]. Int J Cardiol, 2017. doi: 10.1016/j.ijcard.2017.03.025.
[12] 陈捷, 赵秀丽, 武峰, 等. 我国 14 省市中老年人肥胖超重流行现状及其与高血压患病率的关系[J]. 中华医学杂志, 2005, 85(40): 2830-2834. CHEN Jie, ZHAO Xiuli, WU Feng, et al. Epidemiology of obesity and overweight and relation thereof to the prevalence of hypertension in 14 provinces/municipality in China[J]. Nat Med J Chi, 2005, 85(40): 2830-2834.
[13] Ferrannini E, Buzzigoli G, Bonadonna R, et al. Insulin resistance in essential hypertension[J]. N Engl J Med, 1987, 317(6): 350-357.
[14] Ceriello A, Quatraro A, Giugliano D. Diabetes mellitus and hypertension: the possible role of hyperglycaemia through oxidative stress[J]. Diabetologia, 1993, 36(3): 265-266.
[15] Title LM, Cummings PM, Giddens K, et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E[J]. J Am Coll Cardiol, 2000, 36(7): 2185-2191.
[16] Jae SY, Kurl S, Laukkanen JA, et al. Higher blood hematocrit predicts hypertension in men[J]. J Hypertens, 2014, 32(2): 245-250.
[17] 李玉芬, 陈燕, 戚其学. 高血压患者血液流变学变化及临床意义[J]. 中国医科大学学报, 2002, 31(4): 310-311.
[18] Devereux RB, Case DB, Alderman MH, et al. Possible role of increased blood viscosity in the hemodynamics of systemic hypertension[J]. Am J Cardiol, 2000, 85(10): 1265-1268.
[19] Emamian M, Hasanian SM, Tayefi M, et al. Association of hematocrit with blood pressure and hypertension[J]. J Clin Lab Anal, 2017. doi: 10.1002/jcla.22124.
[20] Sesso HD, Buring JE, Chown MJ, et al. A prospective study of plasma lipid levels and hypertension in women[J]. Arch Intern Med, 2005, 165(20): 2420-2427.
[21] Rader DJ, Hovingh GK. HDL and cardiovascular disease[J]. Lancet, 2014, 384(9943): 618-625.
[22] Larsen CM, McCully RB, Murphy JG, et al. Usefulness of high-density lipoprotein cholesterol to predict survival in pulmonary arterial hypertension[J]. Am J Cardiol, 2016, 118(2): 292-297.
[23] 周晓璐, 夏世勤, 王茂林, 等. 血清高密度脂蛋白水平对原发性高血压患者预后的影响[J]. 基层医学论坛, 2014, 18(4): 497-499.
[24] 吴晓强, 李豪侠, 李山平. 基于高密度脂蛋白、甘油三酯、总胆固醇水平评估老年原发性高血压患者预后情况[J]. 中国卫生检验杂志, 2016,26(15): 2204-2206. WU Xiaoqiang, LI Haoxia, LI Shanping. Assessment of prognosis in elderly patients with essential hypertension based on high density lipoprotein, triglycerides and total cholesterol levels[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(15): 2204-2206.
[25] 李忠. 原发性高血压患者血清高密度脂蛋白胆固醇水平与预后的关系[J]. 中国老年学杂志, 2013, 33(18): 4593-4594.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 李吉庆,赵焕宗,宋炳红,张理纯,李向一,陈亚飞,王萍,薛付忠. 基于健康管理队列的心血管事件风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 56-60.
[3] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[4] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[5] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[6] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[7] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[8] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[9] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[10] 张振堂,杨洋,韩福俊,陈向华,季晓康,王永超,王淑康,孙苑潆,李敏,陈亚飞,王丽,薛付忠,刘言训. 基于社区2型糖尿病患者的心脑血管事件5年风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 108-113.
[11] 严芳英,单晓兰,李静媛,张杰,闫雪芳,杨奕,卜培莉. 吡格列酮通过调控Sirt3改善高血压引起的心肌纤维化机制[J]. 山东大学学报(医学版), 2017, 55(5): 13-18.
[12] 李睿,马伟红,任满意,赵萌萌,姜珊,巨媛媛,郭颖,孙昭辉,隋树建. TWEAK与原发性高血压患者心脏重塑的相关性[J]. 山东大学学报(医学版), 2017, 55(5): 49-55.
[13] 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65.
[14] 张华,庄霞,刘振东,刁玉涛,杜佳晨,崔谊. 磁共振弥散张量成像技术评价高血压对年轻成年人脑白质损伤[J]. 山东大学学报(医学版), 2017, 55(5): 56-60.
[15] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!