山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (5): 13-18.doi: 10.6040/j.issn.1671-7554.0.2016.1378
严芳英,单晓兰,李静媛,张杰,闫雪芳,杨奕,卜培莉
YAN Fangying, SHAN Xiaolan, LI Jingyuan, ZHANG Jie, YAN Xuefang, YANG Yi, BU Peili
摘要: 目的 探讨吡格列酮对高血压引起的心肌纤维化的作用及可能机制。 方法 提取新生SD大鼠心肌成纤维细胞,分为空白对照组、单纯刺激组(血管紧张素Ⅱ 1 μmol/L)、单纯药物组(吡格列酮10 μmol/L)、刺激+药物组、沉默信息调节相关因子3(Sirt3)小干扰+刺激组和Sirt3小干扰+刺激+药物组,采用Western blotting法检测平滑肌肌动蛋白(a-SMA)、β-链蛋白(β-catenin)、胶原I(COL I)和Sirt3等蛋白含量;采用RT-PCR法检测a-SMA、Sirt3、β-catenin和COL I等mRNA表达量;采用细胞免疫荧光法检测COL I表达。 结果 与空白对照组相比,单纯刺激组a-SMA和COL I的mRNA和蛋白表达明显增加,Sirt3表达减少,β-catenin表达增加,COL I绿色荧光增强,心肌纤维化明显(P<0.05);与单纯刺激组相比,刺激+药物组a-SMA和COL I的mRNA和蛋白表达明显减少,Sirt3表达增加,β-catenin表达减少,COL I绿色荧光减弱,心肌纤维化明显改善(P<0.05);与药物+刺激组相比,Sirt3小干扰+药物+刺激组a-SMA、COL I的mRNA和蛋白表达增加,Sirt3表达减少,β-catenin表达增多,COL I绿色荧光增强(P<0.05)。单纯药物组与药物+刺激组相比,a-SMA、COL I、β-catenin和Sirt3的mRNA和蛋白表达无明显变化(P>0.05);Sirt3小干扰+刺激组和Sirt3小干扰+药物+刺激组相比,a-SMA、COL I、β-catenin、Sirt3的mRNA和蛋白表达无明显变化(P>0.05)。 结论 吡格列酮能改善高血压心肌纤维化,其作用机制可能与Sirt3激活和β-catenin抑制有关。
中图分类号:
[1] Xu T, Liu J, Zhu G, et al. Prevalence of prehypertension and associated risk factors among Chinese adults from a large-scale multi-ethnic population survey[J]. BMC Public Health, 2016, 16(1): 775. [2] Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2[J]. Circulation, 2013, 128(4): 388-400. [3] Braunwald E. Heart failure[J]. JACC Heart Fail, 2013, 1(1): 1-20. [4] Semple RK, Chatterjee VK, ORahilys. PPAR gamma and human metabolic disease[J]. J Clin Invest, 2006, 116(3): 581-589. [5] Panchapakesan U, Sumual S, Pollock CA, et al. PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose[J]. Am J Physiol Renal Physiol, 2005, 289(5): 1153-1158. [6] Chen T, Li J, Liu J, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway[J]. Am J Physiol Heart Circ Physiol, 2015, 308(5): 424-434. [7] Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling[J]. Cardiovasc Res, 2004, 63(3): 423-432. [8] 赵红梅, 吴铿. 吡格列酮在抗动脉粥样硬化中的作用[J]. 中国全科医学, 2010, 13(5): 555-557. [9] Kularni AA, Woeller CF, Thatcher TH, et al. Emerging PPARγ-Independent role of PPARγ ligands in Lung Diseases[J]. PPAR Res, 2012, 705352. doi:10.1155/2012/705352. [10] Wei WY, Ma ZG, Xu SC, et al. Pioglitazone protected against cardiac hypertrophy via inhibiting AKT/GSK3βand MAPK signaling pathways[J]. PPAR Res, 2016, 9174190. doi: 10.1155/2016/9174190. [11] Zhao SM, Li HW, Guo CY, et al. Cardiac fibrosis in diabetic rats: regulation and mechanism of activation of PPARamma signal pathway[J]. Chin J Physiol, 2010, 53(4): 262-267. [12] Nakamura T, Yamamoto E, Kataoka K, et al. Beneficial effects of pioglitazone on hypertensive cardiovascular injury are enhanced by combination with candesartan[J]. Hypertension, 2008, 51(2): 296-301. [13] Yang Y, Cimen H, Han MJ, et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of ribosomal protein MRPL10[J]. J Biol Chen, 2010, 285(10): 7417-7429. [14] Kim SH, Lu HF, Alano CC. Neuronal SIRT3 protects against exicitotoxic injury in mouse cortical neuron culture[J]. PLoS One, 2011, 6(3): 14731. [15] Onyango P, Celic I, McCaffery JD, et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localizes to mitochondria[J]. Proc Natl AcadSci USA, 2002, 99(21): 13653-13658. [16] Bellizzi D, Rose G, Cavalcante P, et al. Anovel VNTR enhancedr within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages[J]. Genomics, 2005, 85(2): 258-263. [17] Rose G, Data S, Altomare K, et al. Variability of SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly[J]. Exp Gerontol, 2003, 38(10): 1065-1070. [18] Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine166 suppresses age-related cardiac hypertrophy[J]. Aging(Albany NY), 2010, 2(12): 914-923. [19] Pronobis MI, Peifer M. Wnt signaling: The many interfaces of β-catenin[J]. Curr Biol, 2012, 22(4): 137-139. [20] Villar J, Cabrera NE, Valadares F, et al. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs[J]. PLoS One, 2011, 6(9): 23914. [21] Cuevas CA, Gonzalez AA, Intestrosa NC, et al. Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells[J]. Am J Physiol Renal Physiol, 2015, 308(4): 358-365. [22] Sundaresan NR, Bindu S, Pillai VB, et al. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β[J]. Mol Cell Biol, 2015, 36(5): 678-692. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65. |
[3] | 李睿,马伟红,任满意,赵萌萌,姜珊,巨媛媛,郭颖,孙昭辉,隋树建. TWEAK与原发性高血压患者心脏重塑的相关性[J]. 山东大学学报(医学版), 2017, 55(5): 49-55. |
[4] | 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65. |
[5] | 张华,庄霞,刘振东,刁玉涛,杜佳晨,崔谊. 磁共振弥散张量成像技术评价高血压对年轻成年人脑白质损伤[J]. 山东大学学报(医学版), 2017, 55(5): 56-60. |
[6] | 王立轩,张璐,许新,李思雪,刘敏,王亚萍,马慧娟. 慢性间歇性低压低氧通过PI3K依赖的eNOS活化增强大鼠胸主动脉舒张[J]. 山东大学学报(医学版), 2016, 54(2): 11-15. |
[7] | 席福立,张梅. MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控[J]. 山东大学学报(医学版), 2016, 54(2): 6-10. |
[8] | 王勇, 厉泉, 陈善良, 王东, 于建民, 李敏, 刘天起. microRNA-133对终末期扩张型心肌病心肌纤维化调控的作用[J]. 山东大学学报(医学版), 2015, 53(5): 60-65. |
[9] | 徐忠阳, 王立启, 徐振兴, 赵乾, 朱世明. RhoA/ROCK信号通路与原发性高血压患者血压变异性及颈动脉内膜中层厚度的相关性[J]. 山东大学学报(医学版), 2015, 53(2): 48-51. |
[10] | 余慧慧, 雷震, 王淑康, 潘芳. 老年高血压与糖尿病共病患者的不良情绪与相关因素[J]. 山东大学学报(医学版), 2015, 53(12): 81-85,96. |
[11] | 张英. 健康教育在128例老年高血压患者临床护理中的应用[J]. 山东大学学报(医学版), 2014, 52(Z1): 193-194. |
[12] | 江洪, 刘洪, 黄彩英, 梁烨, 李近都, 卢冠铭, 李天资. 原发性高血压患者miRNA-375表达变化的临床意义[J]. 山东大学学报(医学版), 2014, 52(S2): 9-10. |
[13] | 黄晓华, 国庆, 赵艳平, 马良, 王久刚, 斯琴格日乐, 金双龙, 刘艳丽. 蒙西药结合治疗老年性高血压病的疗效观察[J]. 山东大学学报(医学版), 2014, 52(S2): 13-15. |
[14] | 崔洪芝. 北京降压O号治疗高血压临床观察[J]. 山东大学学报(医学版), 2014, 52(S2): 45-45. |
[15] | 吴修华, 杜杰. 微创颅内血肿清除术治疗高血压脑出血临床观察[J]. 山东大学学报(医学版), 2014, 52(S2): 84-84. |
|