您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (2): 6-10.doi: 10.6040/j.issn.1671-7554.0.2015.411

• • 上一篇    下一篇

MicroRNA-34a在心肌纤维化过程中对SH2B3的表达调控

席福立,张梅   

  1. 山东大学齐鲁医院心内科, 山东 济南 250012
  • 收稿日期:2015-04-23 出版日期:2016-02-10 发布日期:2016-02-10
  • 通讯作者: 张梅. E-mail:zhangm@163.com E-mail:zhangm@163.com

Regulation of microRNA-34a on SH2B3 expression during cardiac fibrosis

XI Fuli, ZHANG Mei   

  1. Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2015-04-23 Online:2016-02-10 Published:2016-02-10

摘要: 目的 探讨SH2B3在心肌纤维化过程中的表达调控机制。 方法 体外培养心肌细胞,在接受不同浓度转化生长因子-β1(10、50、100 ng/mL)和不同缺氧时间(3、6、12、24、48 h)处理后,采用Western blotting检测SH2B3蛋白的表达;采用qRT-PCR法检测SH2B3 mRNA和miR-34a的表达;在心肌细胞中转染miR-34a类似物和miR-34a抑制剂后,采用Western blotting法检测SH2B3蛋白的表达;采用荧光素酶报告基因法检测miR-34a对SH2B3基因3'UTR区活性的影响。 结果 在不同浓度转化生长因子-β1和不同缺氧时间刺激心肌细胞后,SH2B3在mRNA和蛋白的表达水平均降低(P<0.05);miR-34a的表达水平则升高(P<0.05), miR-34a可调控SH2B3的表达(P<0.05); miR-34a通过影响SH2B3 3'UTR活性,调控其表达(P<0.05)。 结论 SH2B3在参与成纤维细胞的纤维化过程中受miR-34a的表达调控。

关键词: 心肌纤维化, 转化生长因子-β1, 缺氧, 微小RNA

Abstract: Objective To explore the pathological mechanism of abnormal SH2B3 expression during cardic fibrosis. Methods After H2C9 cells were treated with transformin growth factor-β1(TGF-β1)at different concentrations(10, 50, and 100 ng/mL)and hypoxia stimulation of various duration(3, 6, 12, 24 and 48 h), the expression of SN2B3 protein was detected with Western blotting, and the SN2B3 mRNA and miR-34a expressions were determined with qRT-PCR. After H2C9 cells were transfected with miR-34a mimic/inhibitor, the SH2B3 expression was examined with Western blotting. The effect of miR-34a on the activity of SH2B3 3'UTR was detected with luciferase activity assay. Results After treatment of TGF-β1 and hypoxia, SH2B3 expression decreased at both mRNA and protein levels(P<0.05), but miR-34a expression increased(P<0.05). The miR-34a could regulate SH2B3 expression by directly binding to 3'UTR(P<0.05). Conclusion SH2B3 participates in the fibrosis process of fibroblasts under the regulation of miR-34a.

Key words: Hypoxia, Cardiac fibrosis, Transformin growth factor-β1, MicroRNA

中图分类号: 

  • R542
[1] Purnomo Y, Piccart Y, Coenen T, et al. Oxidative stress and transforming growthfactor-β1-induced cardiacfibrosis[J]. Cardiovasc Hematol Disord Drug Targets, 2013, 13(2): 165-172.
[2] Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease[J]. N Engl J Med, 2000, 342(18): 1350-1358.
[3] Ahmed Z, Pillay TS. Functional effects of APS and SH2-B on insulin receptor signaling[J]. Biochem Soc Trans, 2001, 29(4): 529-534.
[4] Wang B, Lemay S, Tsai S, et al. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase HSCF[J]. Mol Cell Biol, 2001, 21(4): 1077-1088.
[5] Devallière J, Charreau B. The adaptor Lnk(SH2B3): an emerging regulator invascular cells and link between immune and inflammatory signaling[J]. Biochem Pharmacol, 2011, 82(10): 1391-1402.
[6] Flister MJ, Hoffman MJ, Lemke A, et al. SH2B3 is genetic determinant of cardiac inflammation and fibrosis[J]. Circ Cardiovasc Genet, 2015, 8(2): 294-304.
[7] Mayer B, Erdmann J, Schunkert H. Genetics and heritability of coronary artery disease and myocardial infarction[J]. Clin Res Cardiol, 2007, 96(1): 1-7.
[8] Dai Y, Khaidakov M, Wang X, et al. MicroRNAs involved in the regulation of postischemic cardiac fibrosis[J]. Hypertension, 2013, 61(4): 751-756.
[9] Huang Y, Qi Y, Du JQ, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. Expert Opin Ther Targets, 2014, 18(12): 1355-1365.
[10] Wei H, Bedja D, Koitabashi N, et al. Endothelial expression of hypoxia-inducible factor1 protects the murine heart and aortafrom pressure overload by suppression of TGF-β signaling[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 841-850.
[11] Zhao X, Wang K, Liao Y, et al. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFβRI on cardiac fibroblasts[J]. Cell Physiol Biochem, 2015, 35(1): 213-226.
[1] 严芳英,单晓兰,李静媛,张杰,闫雪芳,杨奕,卜培莉. 吡格列酮通过调控Sirt3改善高血压引起的心肌纤维化机制[J]. 山东大学学报(医学版), 2017, 55(5): 13-18.
[2] 张智慧,王丽丽,高华,张健,李娟,李远,武春晓,卢志明. 肺腺癌中缺氧诱导因子-1α调控程序性死亡因子配体1的表达[J]. 山东大学学报(医学版), 2017, 55(4): 65-70.
[3] 李雪,李栋,时庆,周盼盼,鞠秀丽. Helios在儿童急性淋巴细胞性白血病调节性T细胞中的表达及功能[J]. 山东大学学报(医学版), 2017, 55(4): 76-81.
[4] 刘蒙蒙,赵翠芬,孔清玉,蔡直锋,夏伟. miR-1/133对病毒性心肌炎小鼠心肌细胞离子通道表达的影响[J]. 山东大学学报(医学版), 2016, 54(8): 6-11.
[5] 朱静,郭爱丽,张楠,秦明明,刘立娟,朱薇薇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的疗效观察[J]. 山东大学学报(医学版), 2016, 54(4): 60-63.
[6] 庄根苗,唐玲,臧丽娇,安丽. 新生儿缺氧缺血性脑病中血清前白蛋白水平与新生儿行为神经测定的相关性[J]. 山东大学学报(医学版), 2016, 54(12): 37-40.
[7] 李帅,李迪诺,袁超凡,梁旭,王玉彬. miR-98-5p靶向调控AKT2基因对人胃癌MGC803细胞增殖的影响[J]. 山东大学学报(医学版), 2016, 54(11): 27-31.
[8] 张晓晖, 颜磊, 齐莎莎, 路真真, 李明江, 赵兴波. 子宫内膜腺癌中EMT的发生及miR200a/ZEB1信号通路在该过程中发挥的作用[J]. 山东大学学报(医学版), 2015, 53(7): 48-52.
[9] 曾仁仁, 张俊华, 张银旭. miR-485-5p靶向调控Survivin基因对人结直肠癌HCT116细胞侵袭性的影响[J]. 山东大学学报(医学版), 2015, 53(6): 23-27.
[10] 王勇, 厉泉, 陈善良, 王东, 于建民, 李敏, 刘天起. microRNA-133对终末期扩张型心肌病心肌纤维化调控的作用[J]. 山东大学学报(医学版), 2015, 53(5): 60-65.
[11] 范少华, 张轶超, 袁晓东, 毕景雯, 张一辰, 李云. 全脑缺血大鼠脑组织MiR210和stat3的表达与HIF-1α的相关性[J]. 山东大学学报(医学版), 2015, 53(3): 1-5.
[12] 李媛媛, 张楠, 徐谧, 秦明明, 窦冬冬, 朱薇薇. 新生小鼠缺氧缺血脑组织基质细胞衍生因子1α的表达及其作用[J]. 山东大学学报(医学版), 2015, 53(10): 26-31.
[13] 黄艳, 旷昕, 熊花, 刘鑫, 罗晓青, 刘斌. 柴朴汤调控VEGF、TGF-β1的表达对哮喘大鼠气道重塑的影响[J]. 山东大学学报(医学版), 2014, 52(S1): 14-17.
[14] 田艳, 侯善荣, 刘建立, 孙兴盛, 黄丽红. 不同剂量阿托伐他汀对扩张性心肌病大鼠心肌TGF-β1及心脏结构的影响[J]. 山东大学学报(医学版), 2014, 52(9): 6-10.
[15] 胡瑞1,郏雁飞2,郑燕2,马晓丽2,孔毅1,黎娉1,汪运山2. 缺氧对人胃癌细胞HIF-1α及DEC1表达的影响[J]. 山东大学学报(医学版), 2014, 52(4): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!