您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (6): 56-60.doi: 10.6040/j.issn.1671-7554.0.2017.356

• • 上一篇    下一篇

基于健康管理队列的心血管事件风险预测模型

李吉庆1,2,赵焕宗3,宋炳红3,张理纯3,李向一1,2,陈亚飞1,2,王萍4,薛付忠1,2   

  1. 1.山东大学公共卫生学院生物统计学系, 山东 济南 250012;2.山东大学齐鲁生物医学大数据研究中心, 山东 济南 250012;3.临沂市人民医院健康体检中心, 山东 临沂 276000;4.山东大学齐鲁医院手术室, 山东 济南 250012
  • 收稿日期:2017-04-26 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 赵焕宗. E-mail:zhaohuanzong@163.com E-mail:zhaohuanzong@163.com
  • 基金资助:
    国家国际科技合作专项项目(2014DFA32830);山东省医药卫生科技发展计划项目(2013WS0230)

Risk prediction model of cardiovascular disease based on health management cohort

LI Jiqing1,2, ZHAO Huanzong3, SONG Binghong3, ZHANG Lichun3, LI Xiangyi1,2, CHEN Yafei1,2, WANG Ping4, XUE Fuzhong1,2   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. Health Examination Center, Linyi Peoples Hospital, Linyi 276000, Shandong, China;
    4. Operating Room of Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
  • Received:2017-04-26 Online:2017-06-10 Published:2017-06-10

摘要: 目的 基于健康管理队列构建心血管事件风险预测模型。 方法 数据来源于山东多中心健康管理纵向观察队列,共72 843人纳入队列。随机抽取70%队列人群作为训练组,其余30%作为校验组,应用Cox比例风险回归模型对影响心血管事件发生的因素进行变量筛选,利用部分分布竞争风险模型建立心血管事件预测模型,并使用十折交叉验证法检验模型稳定性。 结果 队列随访期间共发生心血管事件2 463例,发病密度为88.79/1 000人年,死于非心血管事件164例。最终纳入模型的变量包括年龄、吸烟、体质量指数、高血压、糖尿病、血脂异常、ST-T改变、T波改变、异常Q波、心律失常及肾脏疾病。训练组ROC曲线下面积男性为0.837(95%CI:0.821~0.853),女性为0.897(95%CI:0.880~0.913);校验组ROC曲线下面积男性为0.838(95%CI:0.813~0.862),女性为0.893(95%CI:0.872~0.914)。 结论 构建的心脑血管事件预测模型在健康管理人群中有较好的预测能力。

关键词: 心血管事件, 健康管理, 风险预测模型

Abstract: Objective To establish a model to evaluate the risk of cardiovascular disease(CVD)among health management population. Methods The cohort consisted of 72 843 individuals who had physical check-up at Shandong Multi-center Longitudinal Cohort for Health Management. They were all free of CVD events. We randomly divided the cohort into the training group(70%)and testing group(30%). Cox proportional hazards regression model was applied to choose risk factors of CVD, competing risk prediction model was used to establish a prediction model for CVD, and ten-fold cross validation was used to test the stability of the model. Discriminatory ability was determined by the area under the receiver operating characteristic curve(AUC). Results There were 2 463 CVD cases during the study period and the incidence was 88.79/1 000 person-year, and 164 people died of other causes. The risk factors included age, 山 东 大 学 学 报 (医 学 版)55卷6期 -李吉庆,等.基于健康管理队列的心血管事件风险预测模型 \=-smoke, BMI, hypertension, diabetes, dyslipidemia, ST-T segment changes, T wave change, abnormal Q wave, arrhythmia and chronic kidney diseases. The estimated AUC of the model in the training group was 0.837(95%CI: 0.821-0.854)for males and 0.897(95%CI:0.880-0.913)for females. The estimated AUC of the model in the testing group was 0.838(95%CI:0.813-0.862)for males and 0.893(95%CI:0.872-0.914)for females. Conclusion The risk prediction model can be used to screen high-risk subjects of CVD in health management population.

Key words: Cardiovascular event, Health management, Risk prediction model

中图分类号: 

  • R541
[1] 吴兆苏. 中国心血管病预防指南简介[J]. 岭南心血管病杂志, 2011(S1):36-37.
[2] 张啸飞, 胡大一, 丁荣晶, 等. 中国心脑血管疾病死亡现况及流行趋势[J]. 中华高血压杂志, 2012, 20(6):600.
[3] D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study[J]. Circulation, 2008, 117(6): 743-753.
[4] 刘静, 赵冬, 秦兰萍, 等. 低密度脂蛋白胆固醇与心血管病发病关系的前瞻性研究[J]. 中华心血管病杂志, 2001, 29(9): 561-565. LIU Jing, ZHAO Dong, QIN Lanping, et al. Association of low density lipoprotein cholesterol with cardiovascular disease in a prospective study[J]. Chin J Cardiol, 2001, 29(9): 561-565.
[5] 吴兆苏, 姚崇华, 赵冬. 中国多省市心血管病趋势及决定因素的人群监测(中国MONICA方案)Ⅲ.危险因素水平与心血管病的联系[J]. 中华心血管病杂志, 1998, 26(2): 85-88. WU Zhaosu, YAO Chonghua, ZHAO Dong, et al. Multi-provincial monitoring of the trends and determinants of cardiovascular diseases(Sino-MONICA project)-III. Association between risk factor levels and cardiovascular disease[J]. Chin J Cardiol, 1998, 26(2): 85-88.
[6] 刘静, 赵冬, 王薇, 等.中国多省市心血管病危险因素队列研究与美国弗莱明翰心脏研究结果的比较[J]. 中华心血管病杂志, 2004, 32(2):167-172. LIU Jing, ZHAO Dong, WANG Wei, et al. Comparison between the results from the Chinese Multi-provincial Cohort Study and those from the Framingham Heart Study[J]. Chin J Cardiol, 2004, 32(2): 167-172.
[7] 王薇, 赵冬, 刘静, 等. 中国35~64岁人群心血管病危险因素与发病危险预测模型的前瞻性研究[J]. 中华心血管病杂志, 2003, 31(12): 902-908. WANG Wei, ZHAO Dong, LIU Jing, et al. Prospective study on the predictive model of cardiovascular disease risk in a Chinese population aged 35-64[J]. Chin J Cardiol, 2003, 31(12): 902-908.
[8] 何疆春,李田昌. 心血管疾病风险评估的现状与展望[J]. 心血管病学进展, 2013, 34(1): 50-55. HE Jiangchun, LI Tianchang. Current situation of and prospects for cardiovascular disease risk assessment[J]. Advance in Cardiovascular Disease, 2013, 34(1): 50-55.
[9] 中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011,39(7):579-616. Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension[J]. Chin J Cardiol, 2011, 39(7):579-616.
[10] 范国洽, 郝慧斌, 杨昱, 等. 2013版《中国2型糖尿病防治指南》解读[J]. 中国临床医生杂志, 2015, 43(10): 92-94.
[11] 高秀芳, 李勇. 《中国成人血脂异常防治指南2016修订版》更新要点解析[J]. 中华高血压杂志, 2017, 25(1): 15-18.
[12] Jason P. Fine, Robert J. Gray. A proportional hazards model for the subdistribution of a competing risk[J]. J Am Stat Assoc, 1999, 94(446):496-509.
[13] Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians[J]. Bone Marrow Transplantation, 2007, 40(4): 381-387.
[14] Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves[J]. BMC Bioinformatics, 2011, 12(1): 77.
[15] Anderson KM, Wilson PW, Odell PM, et al. An updated coronary risk profile. A statement for health professionals[J]. Circulation, 1991, 83(1):356-362.
[16] 王薇, 赵冬. 中国心脑血管病流行特征转化规律、影响因素及预防策略研究与应用[J]. 中华心血管病杂志, 2013, 41(11): 992.
[17] 周北凡. 中国人群心血管病危险因素作用特点的前瞻性研究[J]. 中华流行病学杂志, 2005, 26(1): 58-61.
[18] Wilson PWF, Levy D, Belanger AM, et al. Prediction of coronary heart disease using risk factor categories[J]. Circulation, 1998, 97(18):1837-1847.
[19] Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project[J]. Eur Heart J, 2003, 24(11):987-1003.
[20] Nishimura K, Okamura T, Watanabe M, et al. Predicting coronary heart disease using risk factor categories for a Japanese urban population, and comparison with the Framingham risk score: the suita study[J]. J Atheroscler Thromb, 2014, 21(8):784.
[21] 饶栩栩, 陈百玲, 麦劲壮, 等. 队列人群心电图ST-T异常与死亡及心脑血管事件关系的前瞻性观察[J].中华心血管病杂志, 2004, 32(3):258-263. RAO Xuxu, CHEN Bailing, MAI Jinzhuang, et al. A prospective cohort study on the relationship of abnormal ST-T on electrocardiogram with death[J]. Chin J Cardiol, 2004, 32(3):258-263.
[22] 张义峰, 高晓丽, 郭忠则. 心电图ST-T异常改变与心脑血管事件的关系[J].江苏实用心电学杂志, 2005, 14(1):29-30.
[23] Verrier RL, Sroubek J. Quantitative T-wave alternans analysis for sudden cardiac death risk assessment and guiding therapy: answered and unanswered questions: For: proceedings of ICE2015 Comandatuba, Brazil, sudden death symposium[J]. J Electrocardiol, 2016, 49(3):429-438.
[24] Hanna EB, Glancy DL. ST-segment depression and T-wave inversion: classification, differential diagnosis and caveats[J]. Cleve Clin J Med, 2011, 78(6): 404-414.
[25] 刘龙, 汤哲, 李霞, 等. 基于竞争风险模型的北京市老年人群心血管疾病短期风险评估[J].首都医科大学学报, 2016, 37(2): 181-187. LIU Long, TANG Zhe, LI Xia, et al. A short-term risk assessment for cardiovascular diseases among the elderly in Beijing based on competing risk model[J]. Journal of Capital Medical University, 2016, 37(2): 181-187.
[1] 周苗,卞伟玮,柳晓涓,康凤玲,薛付忠,刘静. 嗜碱性粒细胞百分比与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报(医学版), 2018, 56(3): 85-90.
[2] 柳晓涓,蒋正,康凤玲,周苗,林伟强,薛付忠. 中性粒细胞计数与非酒精性脂肪肝关联性的前瞻性队列研究[J]. 山东大学学报(医学版), 2017, 55(6): 119-123.
[3] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[4] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[5] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[6] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[7] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[8] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[9] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[10] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[11] 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65.
[12] 刘娅飞,邢娉,徐秀琴,杨淑芳,刘言训,袁中尚,薛付忠. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017, 55(6): 30-36.
[13] 顾建华,马晓天,李吉庆,薛付忠,王家林. 健康管理队列慢性阻塞性肺疾病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(12): 62-65.
[14] 柳晓涓,丁荔洁,康凤玲,周苗,薛付忠. 健康管理人群支气管哮喘风险预测模型[J]. 山东大学学报(医学版), 2017, 55(12): 56-61.
[15] 康凤玲,丁荔洁,柳晓涓,周苗,薛付忠. 多中心健康管理人群心脑血管疾病负担分析[J]. 山东大学学报(医学版), 2017, 55(12): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 慧,徐贵发,刘跟生,张 洁,周湘盈,丰佃娟. 人体血清载脂蛋白A-IV水平与肥胖、瘦素的相关性探讨[J]. 山东大学学报(医学版), 2007, 45(1): 6 -09 .
[2] 高立芬,孙汶生,马春红,张利宁,梁晓红,王晓燕,郭春,陈有海 . pcDNA3-HBV瞬时转染对树突状细胞的影响[J]. 山东大学学报(医学版), 2007, 45(4): 325 -328 .
[3] 肖水清,杜毅,韩晶 . 正畸治疗过程中龈沟液内细菌变化的研究[J]. 山东大学学报(医学版), 2006, 44(5): 508 -510 .
[4] 毕爱玲,高建新,刘克敬,周玉琴. 三磷酸腺苷诱导体外培养的胚胎大鼠皮层神经细胞凋亡[J]. 山东大学学报(医学版), 2006, 44(12): 1194 -1196 .
[5] 薛文君,王海涛,王明青 . 预构扩张皮瓣的实验研究[J]. 山东大学学报(医学版), 2006, 44(12): 1233 -1237 .
[6] 张纪庆,王志刚,丁璇,冀勇,沈寻,韩磊. 脑动静脉畸形癫痫的相关血管构筑学及栓塞治疗研究[J]. 山东大学学报(医学版), 2006, 44(12): 1238 -1240 .
[7] 颜军昊,陈子江,李媛,胡京美,高姗姗. 体外受精周期中来源于单原核受精卵胚胎性染色体分析[J]. 山东大学学报(医学版), 2006, 44(6): 545 -548 .
[8] 孙建英,冯延秋,迟兆富,吴伟 . 海人酸致痫大鼠海马CA3区神经元线粒体损伤及妥泰的保护作用[J]. 山东大学学报(医学版), 2006, 44(6): 556 -559 .
[9] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[10] 费 玲,隋树建,任满意,许复郁,刘伟华,杜贻萌 . 实验性兔动脉粥样硬化病变中TRAIL、DR5的表达及意义[J]. 山东大学学报(医学版), 2007, 45(2): 135 -138 .