您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (6): 77-81.doi: 10.6040/j.issn.1671-7554.0.2017.381

• • 上一篇    下一篇

健康管理人群缺血性异常心电图的影响因素

李江冰1,宋心红2,林海燕2,张冬芝2,李向一3,4,许艺博3,4,王丽5,薛付忠3,4   

  1. 1.山东大学附属省立医院心内科, 山东 济南 250021;2.山东大学附属省立医院健康查体中心, 山东 济南 250021;3.山东大学公共卫生学院生物统计学系, 山东 济南 250012;4.山东大学齐鲁生物医学大数据研究中心, 山东 济南 250012;5.山东电力中心医院心内科, 山东 济南 250001
  • 收稿日期:2017-05-03 出版日期:2017-06-10 发布日期:2017-06-10
  • 通讯作者: 宋心红. E-mail:xinhong6812@163.com E-mail:xinhong6812@163.com
  • 基金资助:
    国家自然科学基金(81273177);山东省医药卫生科技发展计划项目(2013WS0230)

The influencing factors of ischemic ECG abnormalities in a large health check-up population

LI Jiangbing1, SONG Xinhong2, LIN Haiyan2, ZHANG Dongzhi2, LI Xiangyi3,4, XU Yibo3,4, WANG Li5, XUE Fuzhong3,4   

  1. 1. Department of Cardiology, Shandong Provincial Hospital Affiliated Shandong University, Jinan 250021, Shandong, China;
    2. Health Management Center, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China;
    3. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    4. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    5. Department of Cardiology, Shandong Electric Power Central Hospital, Jinan 250012, Shandong, China
  • Received:2017-05-03 Online:2017-06-10 Published:2017-06-10

摘要: 目的 阐明健康管理人群的缺血性异常心电图的影响因素及非缺血性异常心电图对重要的缺血性异常心电图的预测价值。 方法 选择山东多中心健康管理纵向观察队列中至少参加2次体检的个体,排除冠心病及缺血性异常心电图患者,构建随访队列。对随访中发生缺血性异常心电图者与未发生缺血性异常心电图者,比较其基线信息,并筛选影响缺血性异常心电图的危险因素,进一步构建缺血性异常心电图的Cox回归分析模型。 结果 队列中共纳入45 546例,随访时间1~7年,平均3.24年,随访中共有7 656例出现缺血性异常心电图,发病密度为77.57/1 000人年。缺血性异常心电图发生的主要影响因素是年龄偏高、女性、高收缩压和舒张压、高空腹血糖、白细胞计数高以及非缺血性异常心电图R波高电压。 结论 本研究探讨导致缺血性异常心电图的危险因素,为制定切实可行的健康干预措施提供了科学依据。

关键词: 缺血性异常心电图, 影响因素, 健康体检大数据, 队列研究, 健康管理人群

Abstract: Objective To explore the influencing factors of ischemic electrocardiogram(ECG)abnormalities and the predictive value of non-ischemic ECG among the health check-up population. Methods Individuals who had taken at least 2 health check-ups during 2004 and 2014 were selected from the Shandong Multi-center Longitudinal Cohort for Health Management. Those who suffered coronary heart disease and presented with ischemic ECG were excluded. The baseline information of subjects who showed ischemic ECG during the follow-up was compared with who showed no ischemic ECG. The risk factors of ischemic ECG were screened and the Cox regression analysis model was established. Results The cohort included 45 546 subjects. During the follow-up of 1-7 years(mean 3.24 years), 7 656 individuals presented with ischemic ECG abnormalities. The incidence density was 77.57/1 000 person-year. The main influencing factors of ischemic ECG included old age, female, high systolic pressure and diastolic pressure, high fasting blood glucose(FBG), high white blood cell count, and non-ischemic abnormal high amplitude R waves(MC-3). Conclusion This study investigated the risk factors leading to ischemic ECG abnormalities and provided scientific information for the intervention of heart diseases.

Key words: Cohort study, Health check-up population, Big data of health check-up, Ischemic ECG, Influencing factors

中图分类号: 

  • R587.1
[1] Sox HC, Garber AM, Littenberg B. The resting electrocardiogram as a screening test. A clinical analysis[J]. Ann Intern Med, 1989, 111(6): 489-502.
[2] Blackburn H. Electrocardiographic classification for population comparisons. The Minnesota code[J]. J Electrocardiol, 1969, 2(1): 5-9.
[3] 黄宛. 黄宛临床心电图学[M]. 北京: 人民卫生出版社, 2009: 80.
[4] Denes P, Larson JC, Lloyd-Jones DM, et al. Major and minor ECG abnormalities in asymptomatic women and risk of cardiovascular events and mortality[J]. JAMA, 2007, 297(9): 978-985.
[5] Fye WB. A history of the origin, evolution, and impact of electrocardiography[J]. Am J Cardiol, 1994, 73(13): 937-949.
[6] Inohara T, Kohsaka S, Okamura T, et al. Cumulative impact of axial, structural, and repolarization ECG findings on long-term cardiovascular mortality among healthy individuals in Japan: National Integrated Project for Prospective Observation of Non-Communicable Disease and its Trends in the Aged, 1980 and 1990[J]. Eur J Prev Cardiol, 2014, 21(12): 1501-1508.
[7] Prineas RJ, Le A, Soliman EZ, et al. United States national prevalence of electrocardiographic abnormalities in black and white middle-age(45- to 64-Year)and older(≥65-Year)adults(from the Reasons for Geographic and Racial Differences in Stroke Study)[J]. Am J Cardiol, 2012, 109(8): 1223-1228.
[8] Auer R, Bauer DC, Marques-Vidal P, et al. Association of major and minor ECG abnormalities with coronary heart disease events[J]. JAMA, 2012, 307(14): 1497-1505.
[9] Ashley EA, Raxwal V, Froelicher V. An evidence-based review of the resting electrocardiogram as a screening technique for heart disease[J]. Prog Cardiovasc Dis, 2001, 44(1): 55-56.
[10] Arwood MJ, Cavallari LH, Duarte JD. Pharmacogenomics of hypertension and heart disease[J]. Curr Hypertens Rep, 2015, 17(9): 586. doi: 10.1007/s11906-015-0586-5.
[11] Colangelo LA, Vu TH, Szklo M, et al. Is the association of hypertension with cardiovascular events stronger among the lean and normal weight than among the overweight and obese? The multi-ethnic study of atherosclerosis[J]. Hypertension, 2015, 66(2): 286-293.
[12] Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people[J]. Lancet, 2014, 383(9932): 1899-1911.
[13] Odden MC, Shlipak MG, Whitson HE, et al. Risk factors for cardiovascular disease across the spectrum of older age: the Cardiovascular Health Study[J]. Atherosclerosis, 2014, 237(1): 336-342.
[14] Yeon SB, Salton CJ, Gona P, et al. Impact of age, sex, and indexation method on MR left ventricular reference values in the Framingham Heart Study offspring cohort[J]. J Magn Reson Imaging, 2015, 41(4): 1038-1045.
[15] Rastogi N, Smith RT. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease[J]. Surv Ophthalmol, 2016, 61(4): 422-433.
[16] Fischer T. The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis[J]. Orv Hetil, 2015, 156(9): 358-365.
[17] Feridooni HA, Dibb KM, Howlett SE. How cardiomyocyte excitation, calcium release and contraction become altered with age[J]. J Mol Cell Cardiol, 2015, 83: 62-72.
[18] Daniel M, Ekenbäck C, Agewall S, et al. Risk factors and markers for acute myocardial infarction with angiographically normal coronary arteries[J]. Am J Cardiol, 2015, 116(6): 838-844.
[19] Wang D, Wang C, Zhou Y, et al. Different blood pressure indexes on intracranial arterial stenosis in Asymptomatic Polyvascular Abnormalities in Community study in China[J]. J Hypertens, 2015, 33(7): 1452-1457.
[20] Emdin CA, Anderson SG, Callender T, et al. Usual blood pressure, peripheral arterial disease, and vascular risk: cohort study of 4.2 million adults[J]. BMJ, 2015, 351: 4865. doi: 10.1136/bmj.h4865.
[21] Ragot H, Monfort A, Baudet M, et al. Loss of notch3 signaling in vascular smooth muscle cells promotes severe heart failure upon hypertension[J]. Hypertension, 2016, 68(2): 392-400.
[22] Walker AM, Patel PA, Rajwani A, et al. Diabetes mellitus is associated with adverse structural and functional cardiac remodelling in chronic heart failure with reduced ejection fraction[J]. Diab Vasc Dis Res, 2016, 13(5): 331-340.
[23] Sebben JC, Pinto RDR, Lopes RD, et al. The role of diabetes mellitus in the composition of coronary thrombi in patients presenting with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention[J]. Am Heart J, 2016, 172: 26-33. doi: 10.1016/j.ahj.2015.10.003.
[24] Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420(6917): 868-874.
[25] Sun M, Tian X, Liu Y, et al. Cellular repressor of E1A-stimulated genes inhibits inflammation to decrease atherosclerosis in ApoE(-/-)mice[J]. J Mol Cell Cardiol, 2015, 86: 32-41. doi: 10.1016/j.yjmcc.2015.07.001.
[1] 周苗,卞伟玮,柳晓涓,康凤玲,薛付忠,刘静. 嗜碱性粒细胞百分比与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报(医学版), 2018, 56(3): 85-90.
[2] 胡岩,徐凌忠,苏丽娜,李谧,于蕊. 山东省农村老年人生活照料需求及其影响因素[J]. 山东大学学报(医学版), 2018, 56(2): 74-79.
[3] 柳晓涓,蒋正,康凤玲,周苗,林伟强,薛付忠. 中性粒细胞计数与非酒精性脂肪肝关联性的前瞻性队列研究[J]. 山东大学学报(医学版), 2017, 55(6): 119-123.
[4] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[5] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[6] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[7] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[8] 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128.
[9] 赵丽婷,张晓菲,吕翠霞,董蕾,李琳,傅继华,王志萍. 山东省参与艾滋病防治社会组织工作人员从业年限及其影响因素[J]. 山东大学学报(医学版), 2017, 55(5): 112-116.
[10] 蔡远楚,王家林,张军,姚能亮,孙晓杰. 山东省5县癌症幸存者工作状况及影响因素[J]. 山东大学学报(医学版), 2017, 55(4): 96-100.
[11] 苏丽娜,徐凌忠,韩开益. 山东省高血压患者服药行为影响因素的广义估计方程分析[J]. 山东大学学报(医学版), 2017, 55(12): 66-70.
[12] 苗春霞,李寒寒,卓朗,王问海,姜金星,郑娟,黄文昊,赵世鸿. 基于分级诊疗制度的徐州市居民就医机构选择[J]. 山东大学学报(医学版), 2017, 55(12): 82-87.
[13] 柳晓涓,丁荔洁,康凤玲,周苗,薛付忠. 健康管理人群支气管哮喘风险预测模型[J]. 山东大学学报(医学版), 2017, 55(12): 56-61.
[14] 顾建华,马晓天,李吉庆,薛付忠,王家林. 健康管理队列慢性阻塞性肺疾病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(12): 62-65.
[15] 康凤玲,丁荔洁,柳晓涓,周苗,薛付忠. 多中心健康管理人群心脑血管疾病负担分析[J]. 山东大学学报(医学版), 2017, 55(12): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!