您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (5): 27-37.doi: 10.6040/j.issn.1671-7554.0.2020.192

• • 上一篇    

LncRNA056298通过影响生长相关蛋白43的表达介导射频消融犬的神经重构

刘东路,王曦敏,李展,杜娟娟,李建华,马神洲,侯应龙   

  1. 山东大学附属千佛山医院心内科, 山东 济南 250014
  • 发布日期:2022-09-27
  • 通讯作者: 侯应龙. E-mail:www.houyinglong2010@hotmail.com
  • 基金资助:
    国家自然科学基金(81970281,81770334);山东省自然科学基金(ZR2017LH003,ZR2015HL003);泰山学者岗位建设基金(ts201511104)

LncRNA056298 mediates the occurrence of neural remodeling recurrence in radiofrequency ablation dogs by affecting the expression of growth associated protein 43

LIU Donglu, WANG Ximin, LI Zhan, DU Juanjuan, LI Jianhua, MA Shenzhou, HOU Yinglong   

  1. Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨射频消融术后内在自主神经重构的发生机制,为房颤复发机制提供理论依据。 方法 选取12只健康成年杂种犬,随机分为1月射频消融组、1月阴性对照组、6月射频消融组和6月阴性对照组,每组3只。1、6月对照组仅行开胸处理;1、6月射频消融组消融右上及右下神经节,分别饲养1、6个月后取消融周围1 cm的心房组织行高通量二代测序,寻找差异表达的长链非编码RNAs(lncRNAs),并预测其靶基因。选取健康成年杂种犬12只,对目的lncRNA进行过表达慢病毒构建,随机分为阴性对照组(右房肌内注射 LncRNA056298阴性对照慢病毒)及过表达慢病毒组(右房肌内注射LncRNA056298过表达慢病毒),每组6只。于注射前及注射慢病毒饲养10 d后检测心房有效不应期(AERP)、房颤诱发率,饲养10 d后将实验犬处死取右心房,采用qRT-PCR法和Western blotting法检测LncRNA056298和GAP43基因及蛋白水平的变化,采用免疫组织化学法检测乙酰胆碱转移酶(CHAT)、酪氨酸羟化酶(TH)、生长相关蛋白43(GAP43)及蛋白基因产物9.5(PGP9.5)等与内在自主神经重构相关的指标变化。 结果 通过生信分析,筛选出差异表达的LncRNA056298及其靶基因GAP43,过表达慢病毒组注射病毒10 d后,发现AERP较注射前明显缩短(95.000 vs 85.000, Z=-3.012,P=0.008),而阴性对照组注射病毒10 d后,AERP较注射前差异无统计学意义(92.500 vs 95.000,Z=0.842,P=0.600)。房颤诱发结果显示,过表达慢病毒组有3只犬诱发房颤,阴性对照组未诱发出房颤。免疫组化结果显示,过表达慢病毒组与阴性对照组相比,内在自主神经重构相关指标GAP43、TH、CHAT及PGP9.5表达均增加。 结论 LncRNA056298可通过影响GAP43的表达影响内在自主神经重构的发生,内在自主神经重构的发生可能是影响射频消融后房颤复发的一个重要因素。

关键词: 心房颤动, 神经重构, 射频消融术, 长链非编码RNA, 长链非编码RNA-056298, 生长相关蛋白43

Abstract: Objective To investigate the mechanism of intrinsic autonomic remodeling after radiofrequency ablation in order to provide theoretical basis for mechanism of atrial fibrillation recurrence. Methods A total of 12 healthy adult mongrel dogs were randomly divided into 1-month radiofrequency ablation group, 1-month negative control group, 6-month radiofrequency ablation group and 6-month negative control group, with 3 dogs in each group. In the control groups, only thoracotomy was performed; in the ablation groups, the right upper and right lower ganglia were ablated, and atrial tissues 1 cm around the ablation were harvested after 1 month and 6 months of feeding for high-throughput second-generation sequencing to identify the differentially expressed long non-coding RNAs(lncRNAs)and predict their target genes. Another 12 healthy adult mongrel dogs were selected and randomly divided into the negative control group(intramuscular injection of LncRNA056298 negative control lentivirus into the right atrium)and overexpressing group(intramuscular injection of LncRNA056298 overexpressing lentivirus into the right atrium), with 6 dogs in either group. The atrial effective refractory period(AERP)and induction rate of atrial fibrillation were detected before lentivirus injection and 10 days after the injection. The right atria of the experimental dogs were collected to detect the mRNA and protein expressions of LncRNA056298 and GAP43 with qRT-PCR and Western blotting. The changes of metrics related to intrinsic autonomic remodeling were detected with immunohistochemistry, such as choline acetyltransferase(CHAT), tyrosine hydroxylase(TH), growth associated protein 43(GAP43)and protein gene product 9.5(PGP9.5). Results Differentially expressed lncRNA056298 and target gene GAP43 were screened out via bioinformatics analysis. Ten days after injection of lentivirus overexpressing lncRNA056298 into experimental animals, AERP was significantly shorter than before(95.000 vs 85.000, Z=-3.012, P=0.008). However, there was no significant difference in AERP before and after injection with negative control lentivirus(92.500 vs 95.000, Z=0.842, P=0.600). The results of atrial fibrillation induction exhibited that atrial fibrillation was induced in 3 dogs in the overexpressing group, whereas there was no atrial fibrillation induced in the negative control group. Immunohistochemistry indicated that compared with negative control group, the overexpressing group had significantly increased expressions of GAP43, TH, CHAT and PGP9.5. Conclusion LncRNA056298 can affect the occurrence of intrinsic autonomic remodeling by affecting the expression of GAP43. Intrinsic autonomic remodeling may be an important factor affecting the recurrence of atrial fibrillation after radiofrequency ablation.

Key words: Atrial fibrillation, Neural remodeling, Radiofrequency ablation, Long non-coding RNA, LncRNA056298, Growth associated protein 43

中图分类号: 

  • R541.7
[1] 李建华, 贾晓萌, 侯应龙. 心房颤动的现代治疗概况[J]. 中国心脏起搏与心电生理杂志,2017,31(6):572-575.
[2] Upadhyay GA, Alenghat FJ. Catheter ablation for atrial fibrillation in 2019[J]. JAMA, 2019, 322(7): 686-687.
[3] 金慧, 张振刚, 袁晓晨. 非瓣膜性心房颤动卒中风险评估研究进展[J]. 国际心血管病杂志,2019,46(6):324-327.
[4] Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal[J]. Physiol Rev, 2011, 91(1): 265-325.
[5] Sakamotos S, Schuessler RB, Lee AM, et al. Vagal denervation and reinnervation after ablation of ganglionated plexi [J]. J Thorac Cardiovasc Surg, 2010, 139(2): 444-452.
[6] Jin Q, Zhao Z, Zhao Q, et al. Long noncoding RNAs: emerging roles in pulmonary hypertension[J]. Herat Fail Rev, 2019, 18. doi: 10.1007/s10741-019-09866-2.
[7] Wu ZY, Trenner M, Boon RA, et al. Long noncoding RNAs in key cellular processes involved in aortic aneurysms[J]. Atherosclerosis, 2020, 292: 112-118. doi: 10.1016/j. atherosclerosis.2019.11.013.
[8] Zhang BF, Jiang H, Chen J, et al. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A[J]. J Cell Mol Med, 2020, 24(1): 1099-1115.
[9] Chen X, Ge W, Hu J, et al. Inhibition of prostaglandin E2 receptor 4 by lnc000908 to promote the endothelial-mesenchymal transition participation in cardiac remodeling[J]. J Cell Mol Med, 2019, 23(9): 6355-6367.
[10] Ponnusamy M, Liu F, Zhang YH, ea al. Long noncoding RNA CPR(Cardiomyocyte Proliferation Regulator)regulates cardiomyocyte proliferation and cardiac repair[J]. Circulation, 2019, 139(23): 2668-2684.
[11] Lv X, Li J, Hu Y, et al. Overexpression of miR-27b-3p targeting wnt3a regulates the signaling pathway of wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation[J]. Oxid Med Cell Longev, 2019, 2019: 5703764. doi:10.1155/2019/5703764.
[12] Leucci E, Patella F, Waage J, et al. MicroRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus[J]. Sci Rep, 2013, 3: 2535. doi: 10.1038/srep02535.
[13] Terricabras M, Piccini JP, Verma A. Ablation of persistent atrial fibrillation: challenges and solutions[J]. J Cardiovasc Electrophysiol, 2019. doi: 10.1111/jce.14311.
[14] Maurer T, Blomström-Lundqvist C, Tilz R, et al. What have we learned of ablation procedures for atrial fibrillation?[J]. J Intern Med, 2016, 279(5): 439-448.
[15] Sugumar H, Nanayakkara S, Chieng D, et al. Arrhythmia recurrence is more common in females undergoing multiple catheter ablation procedures for persistent atrial fibrillation: Time to close the gender gap[J]. Heart Rhythm, 2019. doi: 10.1016/j. hrthm.2019.12.013.
[16] Xintarakou A, Tzeis S, Psarras S, et al. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps [J]. Europace, 2020, 22(3): 342-351.
[17] Li Z, Wang X, Wang W, et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol, 2017, 108: 73-85. doi: 10.1016/j.yjmcc.2017.05.009.
[18] Sauer WH, McKernan ML, Li D, et al. Clinical predictors and outcomes associated with acute return of pulmonary vein conduction during pulmonary vein isolation for treatment of atrial fibrillation. [J]. Heart Rhythm, 2006, 3(9): 1024-1028.
[19] Wang LY, Shen H, Yang Q, et al. LncRNA-LINC00472 contributes to the pathogenesis of atrial fibrillation(Af)by reducing expression of JP2 and RyR2 via miR-24[J]. Biomed Pharmacother, 2019, 120: 109364. doi: 10.1016/j.biopha.2019.109364.
[20] Lu J, Xu FQ, Guo JJ, et al. Long noncoding RNA GAS5 attenuates cardiac fibroblast proliferation in atrial fibrillation via repressing ALK5[J]. Eur Rev Med Pharmacol Sci, 2019, 23(17): 7605-7610.
[21] Gao F, Li Z, Ding WM, et al. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation[J]. Mol Med, 2019, 25(1): 7.
[22] Shen C, Kong B, Liu Y, et al. YY1-induced upregulation of LncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis[J]. Biochem Biophys Res Commun, 2018, 505(1): 134-140.
[23] Yang M, Zhang S, Liang J, et al. Different effects of norepinephrine and nerve growth factor on atrial fibrillation vulnerability[J]. J Cardiol, 2019, 74(5): 460-465.
[24] Barbaro MR, Cremon C, Fuschi D, et al. Nerve fiber overgrowth in patients with symptomatic diverticular disease[J]. Neurogastroenterol Motil, 2019, 31(9): 13575.
[25] Mohan A, Thalamuthu A, Mather KA, et al. Differential expression of synaptic and interneuron genes in the aging human prefrontal cortex[J]. Neurobiol Aging, 2018, 70: 194-202. doi: 10.1016/j.neurobiolaging.2018.06.011.
[26] Gao W, He X, Li Y, et al. The effects of FK1706 on nerve regeneration and bladder function recovery following an end-to-side neurorrhaphy in rats[J]. Oncotarget, 2017, 8(55): 94345-94357.
[27] Honer WG, Falkai P, Chen C, et al. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness[J]. Neuroscience, 1999, 91(4): 1247-1255.
[28] Xiong XX, Pan F, Chen RQ, et al. Neuroglobin boosts axon regeneration during ischemic reperfusion via p38 binding and activation depending on oxygen signal[J]. 2018, 9(2): 163.
[29] Singh B, Krishnan A, Micu I, et al. Peripheral neuron plasticity is enhanced by brief electrical stimulation and overrides attenuated regrowth in experimental diabetes[J]. Neurobiol Dis, 2015, 83: 134-151.doi: 10.1016/j.nbd.2015.08.009.
[30] Wang X, Zhang M, Zhang Y, et al. Long-term effects of ganglionated plexi ablation on electrophysiological characteristics and neuron remodeling in target atrial tissues in a canine model [J]. Circ Arrhythm Electrophysiol, 2015, 8(5): 1276-1283.
[31] Hung CC, Lin CH, Chang H, et al. Astrocytic GAP43 Induced by the TLR4/NF-κB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity[J]. J Neurosic, 2016, 36(6): 2027-2043.
[32] Sanna MD, Quattrone A, Ghelardini C, et al. PKC-mediated HuD-GAP43 pathway activation in a mouse model of antiretroviral painful neuropathy [J]. Pharmacol Res, 2014, 81: 44-53. doi: 10.1016/j.phrs.2014.02.004.
[33] Li BO, Wang ZJ, Yu M, et al. miR-22-3p enhances the intrinsic regenerative abilities of primary sensory neurons via the CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis [J]. J Cell Physiol, 2020, 235(5): 4605-4617.
[1] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[2] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[3] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
[4] 张学丽, 郑璐, 王瑜, 王康, 闫素华. 沉默LncRNA H19通过调节神经生长因子抑制心肌梗死后交感神经重构[J]. 山东大学学报 (医学版), 2021, 59(5): 73-81.
[5] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
[6] 黄柏松,丛洪良. 1 430例中年中危血栓栓塞风险心房颤动抗凝治疗的方案[J]. 山东大学学报 (医学版), 2021, 59(10): 47-56.
[7] 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67.
[8] 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75.
[9] 李建华,李展,贾晓萌,杜娟娟,马神洲,刘东路,张勇,张玉娇,侯应龙. TCONS_00016478 通过PGC1-α/ PPARγ信号通路影响实验性房颤兔心房肌能量代谢重构的机制[J]. 山东大学学报 (医学版), 2019, 57(4): 1-8.
[10] 陈琳琳,衣少雷,王蔚宗,李展,张勇,张玉娇,任满意,解新星,刘同宝,侯应龙. 预测心房颤动患者射频消融术后复发的危险因素[J]. 山东大学学报 (医学版), 2019, 57(3): 49-57.
[11] 闫素真,杜鲁涛,王丽丽,王传新. 血清lncRNA UCA1在食管鳞癌的表达及临床意义[J]. 山东大学学报 (医学版), 2018, 56(6): 41-46.
[12] 杜福田,杜云龙,林洪峰. 部分脾栓塞联合腹腔镜下射频消融术治疗门脉高压性脾功能亢进的临床研究[J]. 山东大学学报(医学版), 2017, 55(7): 79-83.
[13] 魏金秋,张玉娇,李展,王曦敏,陈琳琳,杜娟娟,张勇,解新星,侯应龙. GCH1通过BH4通路对快速心房起搏犬自主神经重构的影响[J]. 山东大学学报(医学版), 2017, 55(5): 8-12.
[14] 张凯, 梁飞, 韩波, 马晓春, 朱小龙, 张军, 张涛, 邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融术与单纯射频消融改良迷宫Ⅲ术治疗合并风湿性二尖瓣病变的心房颤动比较[J]. 山东大学学报(医学版), 2015, 53(5): 66-70.
[15] 姜蕾, 张磊, 梁江久. 长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达[J]. 山东大学学报(医学版), 2015, 53(5): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!