山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (5): 19-26.doi: 10.6040/j.issn.1671-7554.0.2019.1187
• • 上一篇
熊艺璇1,2,赵斌1,2,贾凌璐1,2,张文静1,2,徐欣1,2
XIONG Yixuan1,2, ZHAO Bin1,2, JIA Linglu1,2, ZHANG Wenjing1,2, XU Xin1,2
摘要: 目的 观察姜黄素对炎症状态下的牙周膜干细胞(PDLSCs)成骨分化的影响,并初步探讨这一影响是否与Nrf2信号通路有关。 方法 通过组织块法分离培养牙周膜干细胞,脂多糖(LPS)建立体外炎症微环境模型,使用不同浓度姜黄素处理细胞,CCK8、ALP定量分析筛选出姜黄素的最适作用浓度进行后续实验。设置分组:空白对照组、LPS组、LPS+姜黄素组,采用Western blotting、RT-PCR、ALP定量分析、ALP染色、茜素红染色检测成骨相关指标。Western blotting检测Nrf2水平,进一步构建Nrf2小干扰模型并检测干扰效率。设置分组:LPS+姜黄素组、LPS+姜黄素+siNrf2组,并检测相关成骨指标。 结果 成功分离培养牙周膜干细胞,并建立牙周膜干细胞体外炎症微环境。CCK8、ALP定量分析结果显示,低浓度的姜黄素无细胞毒性(F1d=6.08, F3d=9.404, F5d=166.289, P<0.001),且能上调ALP活性,0.1 μmol/L为最适浓度(F=314.269, P<0.001),进一步实验结果显示,姜黄素可以增高炎症状态下ALP活性以及成骨相关蛋白和基因ALP、COL1、RUNX2的表达(FALP活性=120.401, FALP蛋白=48.505, FCOL1蛋白=473.372, FRUNX2蛋白=363.425, FALP基因=75.652, FCOL1基因=454.257, FRUNX2基因=98.761, P<0.001)。且ALP染色加深,矿化结节增多。并且Nrf2蛋白水平的变化与成骨变化趋势一致(F=27.323, P<0.001)。之后,成功构建Nrf2小干扰模型,Nrf2蛋白水平降低(t=9.910,P=0.001),相对于LPS+姜黄素组,LPS+姜黄素+siNrf2组的成骨相关指标均下调且ALP染色变浅(tALP活性=10.027, tALP蛋白=15.641, tCOL1蛋白=10.357, tRUNX2蛋白=13.305, tALP基因=19.965, tCOL1基因=12.590, tRUNX2基因=9.027, P<0.001)。 结论 姜黄素可以逆转炎症状态下牙周膜干细胞下降的成骨分化能力,这一逆转作用与Nrf2信号通路有关。
中图分类号:
[1] 陶成凤, 吴云鼎. 口腔干细胞应用于牙周组织再生的研究进展[J]. 医学综述, 2015, 21(6): 1040-1042. TAO Chengfeng, WU Yunding. Research progress on application of dental stem cells in periodontal regeneration [J]. Medical Recapitulate, 2015, 21(6): 1040-1042. [2] Maeda H, Tomokiyo A, Fujii S, et al. Promise of periodontal ligament stem cells in regeneration of periodontium [J]. Stem Cell Res Ther, 2011, 2(4): 33-35. [3] 孙静, 李纾. 牙周膜干细胞巢与牙周组织再生[J]. 国际口腔医学杂志, 2011, 38(4): 460-462. SUN Jing, LI Shu. Periodontal ligament stem cell niche and periodontal tissue regeneration [J]. International Journal of Stomatology, 2011, 38(4): 460-462. [4] 袁萍, 李淑慧, 赵璐, 等. 炎症微环境下人牙周膜干细胞的生物学特性[J]. 中国组织工程研究, 2016, 20(6): 898-905. YUAN Ping, LI Shuhui, ZHAO Lu, et al. Biological properties of human periodontal ligament stem cells under inflammatory microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2016, 20(6): 898-905. [5] Moghadamtousi SZ, Kadir HA, Hassandarvish P, et al. A review on antibacterial, antiviral, and antifungal activity of curcumin [J]. Biomed Res Int, 2014, 2014(1): 186864. [6] Yang MW, Wang TH, Yan PP, et al. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice [J]. Phytomedicine, 2011, 18(2-3): 205-213. [7] Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin [J]. Biofactors, 2013, 39(1): 101-121. [8] Park CK, Lee Y, Kim KH, et al. Nrf2 is a novel regulator of bone acquisition [J]. Bone, 2014, 63: 36-46. [9] Xia Y, Tang HN, Wu RX, et al. Cell responses to conditioned media produced by patient-matched stem cells derived from healthy and inflamed periodontal ligament tissues [J]. J Periodontol, 2016, 87(5): e53-e63. doi: 10.1902/jop.2015.150462. [10] Ran C, Wen L, Rui Z, et al. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce caspase-1 activation in periodontitis [J]. Front Cell Infect Microbiol, 2017, 7: 474-482. doi: 10.3389/fcimb.2017.00474. [11] 史庆怡. LPS引起口腔颌面部感染的实验研究及其免疫炎症因子的测定[D].长春: 吉林大学, 2018. [12] 张云. Escherichia coli脂多糖对牙周靶细胞—成骨细胞和骨髓单核细胞的影响及其机制研究[D]. 杭州: 浙江大学, 2007. [13] Li L, Liu W, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions [J]. Cell Death Dis, 2018, 9(5): 480-490. [14] Li C, Li B, Dong Z, et al. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway [J]. Stem Cell Res Ther, 2014, 5(3): 67-79. [15] Ammon HP, Wahl MA. Pharmacology of curcuma longa [J]. Planta Med, 1991, 57(1): 1-7. [16] Qureshi S. Toxicity studies on Alpinia galanga and curcuma longa [J]. Planta Med, 1992, 58(2): 124-127. [17] Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation [J]. BMC Complement Altern Med, 2006, 6: 10-14. [18] Hatefi M, Ahmadi MRH, Rahmani A, et al. Effects of curcumin on bone loss and biochemical markers of bone turnover in patients with spinal cord injury [J]. World Neurosurg, 2018, 114: e785-e791. doi: 10.1016/j.wneu.2018.03.081. [19] Bharti AC, Takada Y, Aggarwal BB. Curcumin(diferuloylmethane)inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis [J]. J Immunol, 2004, 172(10): 5940-5947. [20] 许东亮, 彭朝晖, 熊美才. 姜黄素对骨质疏松大鼠种植体骨结合的促进作用[J]. 吉林大学学报(医学版), 2019, 45(4): 877-881. XU Dongliang, PENG Chaohui, XIONG Meicai. Promotion effect of curcumin on implant osseointegration in osteoporosis rats [J]. Journal of Jilin University(Medicine Edition), 2019, 45(4): 877-881. [21] Wang N, Wang F, Gao Y, et al. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis [J]. J Pharmacol Sci, 2016, 132(3): 192-200 [22] Bose S, Sarkar N, Banerjee D. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration [J]. Mater Today Chem, 2018, 8: 110-120. doi: 10.1016/j.mtchem.2018.03.005. [23] Harris MT, Butler DL, Boivin GP, et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs [J]. J Orthop Res, 2004, 22(5): 998-1003. [24] Yoon DS, Choi Y, Lee JW. Cellular localization of Nrf2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53-SIRT1 axis [J]. Cell Death Dis, 2016, 7: e2093. doi: 10.1038/cddis.2016.3. [25] Sim HJ, Kim JH, Kook SH, et al. Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways[J]. Mol Cell Biochem, 2016, 419(1-2): 157-163. [26] Osamu H, Koji H, Frank D, et al. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes-role of the redox-regulated transcription factor Nrf2 [J]. BMC Complementary Altern Med, 2011, 11(1): 1-8. [27] Li X, Sun X, Zhang X, et al. Enhanced oxidative damage and Nrf2 downregulation contribute to the aggravation of periodontitis by diabetes mellitus [J]. Oxid Med Cell Longev, 2018,2018:9421019. doi: 10.1155/2018/9421019. [28] Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation [J]. Signal Transduct Target Ther, 2017, 2: e17023-e17031. doi:10.1038/sigtrans.2017.23 [29] Bin M, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation [J]. Front Immunol, 2016, 7: 378-391. [30] Pedrazza L, Cubillos-Rojas M, De Mesquita FC, et al. Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway [J]. Stem Cell Res Ther, 2017, 8(1): 289-302. |
[1] | 丁菲,姜洁. 姜黄素对子宫内膜癌孕激素抵抗的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 35-41. |
[2] | 张栌丹,丁晓玲,崔舒悦,程晨,魏福兰,丁刚. 牙周膜干细胞调节巨噬细胞功能的体外研究[J]. 山东大学学报 (医学版), 2021, 59(3): 35-40. |
[3] | 李景媛,宋玲,林松,宋晖. 不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响[J]. 山东大学学报(医学版), 2017, 55(7): 31-37. |
[4] | 史培堃,曾贝妮,吴伟芳,胡晓燕,马天加,周亚滨. Keap1在肾细胞癌中的表达及其作用[J]. 山东大学学报(医学版), 2017, 55(3): 94-99. |
[5] | 李珊珊,杨静,张瑾. 小鼠骨硬化蛋白的转录后调控机制[J]. 山东大学学报(医学版), 2017, 55(3): 43-48. |
[6] | 吴彧,夏彦清,伍玥,孙琳,邬成业,娄桂予,李雅欣,丁松泽,孙恺. 炎性细胞模型中姜黄素对胆固醇逆转运蛋白ABCA1和ABCG1基因的影响[J]. 山东大学学报(医学版), 2016, 54(11): 24-26. |
[7] | 段玉伟,席延卫,杨小叶,杜洪亮,翟光喜 . 姜黄素胆盐/磷脂混合胶束的制备及理化性质[J]. 山东大学学报(医学版), 2014, 52(5): 63-67. |
[8] | 王亚云1, 王一彪1, 张雪1, 林梅1, 苏宏1,马宇1,朱晓波1, 陈欧2. PS-341对肺动脉高压大鼠Nrf2/NF-κB表达的影响及作用机制[J]. 山东大学学报(医学版), 2014, 52(2): 6-11. |
[9] | 陈洪忠, 李海珍, 任冬梅. 木犀草素对EA.hy926细胞Nrf2信号通路的激活作用及H2O2致氧化损伤的保护作用[J]. 山东大学学报(医学版), 2014, 52(11): 6-10. |
[10] | 王翔宇1,梅元武2,杨红卫3. 姜黄素对多巴胺诱导PC12细胞凋亡的拮抗作用[J]. 山东大学学报(医学版), 2011, 49(2): 29-33. |
[11] | 李德强1,刘培来1,汤亭亭2,卢建熙2,张元凯1,李明1,李振中3,戴尅戎2. 动态培养对骨髓间充质干细胞在三维多孔支架中成骨分化的影响[J]. 山东大学学报(医学版), 2010, 48(4): 49-53. |
[12] | . 姜黄素对小鼠实验性急性坏死性胰腺炎的抑制作用[J]. 山东大学学报(医学版), 2009, 47(8): 25-28. |
[13] | 于冬青1 ,刘金波2 ,邓华聪3 . 姜黄素对糖尿病大鼠肾脏结构和功能的影响[J]. 山东大学学报(医学版), 2009, 47(04): 42-45. |
|