您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (5): 19-26.doi: 10.6040/j.issn.1671-7554.0.2019.1187

• • 上一篇    

姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化

熊艺璇1,2,赵斌1,2,贾凌璐1,2,张文静1,2,徐欣1,2   

  1. 1. 山东大学口腔医学院 口腔医院种植科, 山东 济南 250012;2. 山东省口腔组织再生重点实验室, 山东省口腔生物材料与组织再生工程实验室, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 徐欣. E-mail:xinxu@sdu.edu.cn
  • 基金资助:
    山东省泰山学者专项基金(ts201511106)

Curcumin upregulates osteogenesis under inflammatory condition in periodontal ligament stem cells via Nrf2 signaling pathway

XIONG Yixuan1,2, ZHAO Bin1,2, JIA Linglu1,2, ZHANG Wenjing1,2, XU Xin1,2   

  1. 1. Department of Oral Implantology, School and Hospital of Stomatology, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 观察姜黄素对炎症状态下的牙周膜干细胞(PDLSCs)成骨分化的影响,并初步探讨这一影响是否与Nrf2信号通路有关。 方法 通过组织块法分离培养牙周膜干细胞,脂多糖(LPS)建立体外炎症微环境模型,使用不同浓度姜黄素处理细胞,CCK8、ALP定量分析筛选出姜黄素的最适作用浓度进行后续实验。设置分组:空白对照组、LPS组、LPS+姜黄素组,采用Western blotting、RT-PCR、ALP定量分析、ALP染色、茜素红染色检测成骨相关指标。Western blotting检测Nrf2水平,进一步构建Nrf2小干扰模型并检测干扰效率。设置分组:LPS+姜黄素组、LPS+姜黄素+siNrf2组,并检测相关成骨指标。 结果 成功分离培养牙周膜干细胞,并建立牙周膜干细胞体外炎症微环境。CCK8、ALP定量分析结果显示,低浓度的姜黄素无细胞毒性(F1d=6.08, F3d=9.404, F5d=166.289, P<0.001),且能上调ALP活性,0.1 μmol/L为最适浓度(F=314.269, P<0.001),进一步实验结果显示,姜黄素可以增高炎症状态下ALP活性以及成骨相关蛋白和基因ALP、COL1、RUNX2的表达(FALP活性=120.401, FALP蛋白=48.505, FCOL1蛋白=473.372, FRUNX2蛋白=363.425, FALP基因=75.652, FCOL1基因=454.257, FRUNX2基因=98.761, P<0.001)。且ALP染色加深,矿化结节增多。并且Nrf2蛋白水平的变化与成骨变化趋势一致(F=27.323, P<0.001)。之后,成功构建Nrf2小干扰模型,Nrf2蛋白水平降低(t=9.910,P=0.001),相对于LPS+姜黄素组,LPS+姜黄素+siNrf2组的成骨相关指标均下调且ALP染色变浅(tALP活性=10.027, tALP蛋白=15.641, tCOL1蛋白=10.357, tRUNX2蛋白=13.305, tALP基因=19.965, tCOL1基因=12.590, tRUNX2基因=9.027, P<0.001)。 结论 姜黄素可以逆转炎症状态下牙周膜干细胞下降的成骨分化能力,这一逆转作用与Nrf2信号通路有关。

关键词: 牙周膜干细胞, 成骨分化, 姜黄素, 炎症环境, 核因子E2相关因子2

Abstract: Objective To investigate the effects of curcumin on osteogenic differentiation of periodontal ligament stem cells(PDLSCs)in inflammatory microenvironment and the role of Nrf2 signaling pathway. Methods PDLSCs were isolated and cultured with tissue block method in vitro. Lipopolysaccharide(LPS)was used to establish an inflammatory microenvironment model in vitro. PDLSCs were treated with different concentrations of curcumin. The optimal curcumin concentration was determined with CCK8 and ALP activity assay. The PDLSCs were divided into 3 groups: control group, LPS group and LPS + curcumin group. The osteogenic indexes were evaluated with Western blotting, real-time PCR, ALP activity analysis, ALP staining and Alizarin Red staining. The protein level of Nrf2 was detected with Western blotting. Next, siNrf2 was constructed to transfect the PDLSCs and the interference efficiency was tested with Western blotting. The PDLSCs were divided into 2 groups: LPS + curcumin group and LPS + curcumin + siNrf2 group, and the osteogenic indexes were tested. Results PDLSCs were isolated and cultured and the inflammatory microenvironment in vitro was established successfully. CCK8 and ALP activity results showed that curcumin at low concentration was non-toxic to PDLSCs in inflammatory state(F1d=6.08, F3d=9.404, F5d=166.289, P<0.001), was able to increase ALP activity, and the optimal concentration was 0.1 μmol/L(F=314.269, P<0.001). Further study showed that curcumin increased the ALP activity, and protein and mRNA levels of ALP, COL1, RUNX2(FALP activity=120.401; the protein levels: FALP=48.505, FCOL1=473.372, FRUNX2=363.425; the mRNA levels: FALP=75.652, FCOL1=454.257, FRUNX2=98.761, P<0.001). Besides, ALP staining became darker and the calcium content increased. The change of Nrf2 level showed similar trend as osteogenesis (F=27.323, P<0.001). In the siNrf2 model, the protein level of Nrf2 decreased(t=9.910, P=0.001). Compared with LPS + curcumin group, the LPS+curcumin+siNrf2 group had decreased osteogenic indexes(tALP activity=10.027; the protein levels: tALP=15.641, tCOL1=10.357, tRUNX2=13.305; the mRNA levels: tALP=19.965, tCOL1=12.590, tRUNX2=9.027, P<0.001)and ALP staining became lighter. Conclusion Curcumin can reverse the osteogenic differentiation of periodontal ligament stem cells in inflammatory state, which is related to Nrf2 signaling pathway.

Key words: Periodontal ligament stem cells, Osteogenic differentiation, Curcumin, Inflammatory environment, Nuclear factor erythroid-2-related factor

中图分类号: 

  • R329.28
[1] 陶成凤, 吴云鼎. 口腔干细胞应用于牙周组织再生的研究进展[J]. 医学综述, 2015, 21(6): 1040-1042. TAO Chengfeng, WU Yunding. Research progress on application of dental stem cells in periodontal regeneration [J]. Medical Recapitulate, 2015, 21(6): 1040-1042.
[2] Maeda H, Tomokiyo A, Fujii S, et al. Promise of periodontal ligament stem cells in regeneration of periodontium [J]. Stem Cell Res Ther, 2011, 2(4): 33-35.
[3] 孙静, 李纾. 牙周膜干细胞巢与牙周组织再生[J]. 国际口腔医学杂志, 2011, 38(4): 460-462. SUN Jing, LI Shu. Periodontal ligament stem cell niche and periodontal tissue regeneration [J]. International Journal of Stomatology, 2011, 38(4): 460-462.
[4] 袁萍, 李淑慧, 赵璐, 等. 炎症微环境下人牙周膜干细胞的生物学特性[J]. 中国组织工程研究, 2016, 20(6): 898-905. YUAN Ping, LI Shuhui, ZHAO Lu, et al. Biological properties of human periodontal ligament stem cells under inflammatory microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2016, 20(6): 898-905.
[5] Moghadamtousi SZ, Kadir HA, Hassandarvish P, et al. A review on antibacterial, antiviral, and antifungal activity of curcumin [J]. Biomed Res Int, 2014, 2014(1): 186864.
[6] Yang MW, Wang TH, Yan PP, et al. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice [J]. Phytomedicine, 2011, 18(2-3): 205-213.
[7] Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin [J]. Biofactors, 2013, 39(1): 101-121.
[8] Park CK, Lee Y, Kim KH, et al. Nrf2 is a novel regulator of bone acquisition [J]. Bone, 2014, 63: 36-46.
[9] Xia Y, Tang HN, Wu RX, et al. Cell responses to conditioned media produced by patient-matched stem cells derived from healthy and inflamed periodontal ligament tissues [J]. J Periodontol, 2016, 87(5): e53-e63. doi: 10.1902/jop.2015.150462.
[10] Ran C, Wen L, Rui Z, et al. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce caspase-1 activation in periodontitis [J]. Front Cell Infect Microbiol, 2017, 7: 474-482. doi: 10.3389/fcimb.2017.00474.
[11] 史庆怡. LPS引起口腔颌面部感染的实验研究及其免疫炎症因子的测定[D].长春: 吉林大学, 2018.
[12] 张云. Escherichia coli脂多糖对牙周靶细胞—成骨细胞和骨髓单核细胞的影响及其机制研究[D]. 杭州: 浙江大学, 2007.
[13] Li L, Liu W, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions [J]. Cell Death Dis, 2018, 9(5): 480-490.
[14] Li C, Li B, Dong Z, et al. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway [J]. Stem Cell Res Ther, 2014, 5(3): 67-79.
[15] Ammon HP, Wahl MA. Pharmacology of curcuma longa [J]. Planta Med, 1991, 57(1): 1-7.
[16] Qureshi S. Toxicity studies on Alpinia galanga and curcuma longa [J]. Planta Med, 1992, 58(2): 124-127.
[17] Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation [J]. BMC Complement Altern Med, 2006, 6: 10-14.
[18] Hatefi M, Ahmadi MRH, Rahmani A, et al. Effects of curcumin on bone loss and biochemical markers of bone turnover in patients with spinal cord injury [J]. World Neurosurg, 2018, 114: e785-e791. doi: 10.1016/j.wneu.2018.03.081.
[19] Bharti AC, Takada Y, Aggarwal BB. Curcumin(diferuloylmethane)inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis [J]. J Immunol, 2004, 172(10): 5940-5947.
[20] 许东亮, 彭朝晖, 熊美才. 姜黄素对骨质疏松大鼠种植体骨结合的促进作用[J]. 吉林大学学报(医学版), 2019, 45(4): 877-881. XU Dongliang, PENG Chaohui, XIONG Meicai. Promotion effect of curcumin on implant osseointegration in osteoporosis rats [J]. Journal of Jilin University(Medicine Edition), 2019, 45(4): 877-881.
[21] Wang N, Wang F, Gao Y, et al. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis [J]. J Pharmacol Sci, 2016, 132(3): 192-200
[22] Bose S, Sarkar N, Banerjee D. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration [J]. Mater Today Chem, 2018, 8: 110-120. doi: 10.1016/j.mtchem.2018.03.005.
[23] Harris MT, Butler DL, Boivin GP, et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs [J]. J Orthop Res, 2004, 22(5): 998-1003.
[24] Yoon DS, Choi Y, Lee JW. Cellular localization of Nrf2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53-SIRT1 axis [J]. Cell Death Dis, 2016, 7: e2093. doi: 10.1038/cddis.2016.3.
[25] Sim HJ, Kim JH, Kook SH, et al. Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways[J]. Mol Cell Biochem, 2016, 419(1-2): 157-163.
[26] Osamu H, Koji H, Frank D, et al. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes-role of the redox-regulated transcription factor Nrf2 [J]. BMC Complementary Altern Med, 2011, 11(1): 1-8.
[27] Li X, Sun X, Zhang X, et al. Enhanced oxidative damage and Nrf2 downregulation contribute to the aggravation of periodontitis by diabetes mellitus [J]. Oxid Med Cell Longev, 2018,2018:9421019. doi: 10.1155/2018/9421019.
[28] Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation [J]. Signal Transduct Target Ther, 2017, 2: e17023-e17031. doi:10.1038/sigtrans.2017.23
[29] Bin M, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation [J]. Front Immunol, 2016, 7: 378-391.
[30] Pedrazza L, Cubillos-Rojas M, De Mesquita FC, et al. Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway [J]. Stem Cell Res Ther, 2017, 8(1): 289-302.
[1] 丁菲,姜洁. 姜黄素对子宫内膜癌孕激素抵抗的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 35-41.
[2] 张栌丹,丁晓玲,崔舒悦,程晨,魏福兰,丁刚. 牙周膜干细胞调节巨噬细胞功能的体外研究[J]. 山东大学学报 (医学版), 2021, 59(3): 35-40.
[3] 李景媛,宋玲,林松,宋晖. 不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响[J]. 山东大学学报(医学版), 2017, 55(7): 31-37.
[4] 史培堃,曾贝妮,吴伟芳,胡晓燕,马天加,周亚滨. Keap1在肾细胞癌中的表达及其作用[J]. 山东大学学报(医学版), 2017, 55(3): 94-99.
[5] 李珊珊,杨静,张瑾. 小鼠骨硬化蛋白的转录后调控机制[J]. 山东大学学报(医学版), 2017, 55(3): 43-48.
[6] 吴彧,夏彦清,伍玥,孙琳,邬成业,娄桂予,李雅欣,丁松泽,孙恺. 炎性细胞模型中姜黄素对胆固醇逆转运蛋白ABCA1和ABCG1基因的影响[J]. 山东大学学报(医学版), 2016, 54(11): 24-26.
[7] 段玉伟,席延卫,杨小叶,杜洪亮,翟光喜 . 姜黄素胆盐/磷脂混合胶束的制备及理化性质[J]. 山东大学学报(医学版), 2014, 52(5): 63-67.
[8] 王亚云1, 王一彪1, 张雪1, 林梅1, 苏宏1,马宇1,朱晓波1, 陈欧2. PS-341对肺动脉高压大鼠Nrf2/NF-κB表达的影响及作用机制[J]. 山东大学学报(医学版), 2014, 52(2): 6-11.
[9] 陈洪忠, 李海珍, 任冬梅. 木犀草素对EA.hy926细胞Nrf2信号通路的激活作用及H2O2致氧化损伤的保护作用[J]. 山东大学学报(医学版), 2014, 52(11): 6-10.
[10] 王翔宇1,梅元武2,杨红卫3. 姜黄素对多巴胺诱导PC12细胞凋亡的拮抗作用[J]. 山东大学学报(医学版), 2011, 49(2): 29-33.
[11] 李德强1,刘培来1,汤亭亭2,卢建熙2,张元凯1,李明1,李振中3,戴尅戎2. 动态培养对骨髓间充质干细胞在三维多孔支架中成骨分化的影响[J]. 山东大学学报(医学版), 2010, 48(4): 49-53.
[12] . 姜黄素对小鼠实验性急性坏死性胰腺炎的抑制作用[J]. 山东大学学报(医学版), 2009, 47(8): 25-28.
[13] 于冬青1 ,刘金波2 ,邓华聪3
. 姜黄素对糖尿病大鼠肾脏结构和功能的影响[J]. 山东大学学报(医学版), 2009, 47(04): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!