山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (4): 1-8.doi: 10.6040/j.issn.1671-7554.0.2018.706
• 基础医学 •
李建华,李展,贾晓萌,杜娟娟,马神洲,刘东路,张勇,张玉娇,侯应龙
LI Jianhua, LI Zhan, JIA Xiaomeng, DU Juanjuan, MA Shenzhou, LIU Donglu, ZHANG Yong, ZHANG Yujiao, HOU Yinglong
摘要: 目的 探讨长链非编码RNA(lncRNA)TCONS_00016478通过调控过氧化物酶增殖物激活受体γ 辅助激活因子1α(PGC-1α)/过氧化物酶增殖物激活受体γ(PPARγ)信号通路影响实验性房颤兔心房肌能量代谢重构的机制。 方法 采用高通量二代测序技术检测房颤兔/非房颤兔右心房组织差异性表达lncRNAs,成年新西兰白兔18只,体质量2.0~2.5 kg,雌雄不拘,随机分为假手术组(行开胸术但不注射病毒)、阴性对照慢病毒组(右心房注射阴性对照慢病毒)和TCONS_00016478沉默慢病毒组(右心房注射TCONS_00016478沉默慢病毒),每组6只。感染病毒前及感染1周后分别使用心脏电生理仪行程序电刺激,检测心房有效不应期(AERP)与房颤诱发性。感染病毒1周后处死动物,取心房肌组织,采用qRT-PCR法检测RNA的表达,采用Western blotting法检测蛋白质的表达,采用PAS染色法和油红O染色法分别检测糖原和脂滴沉积。 结果 与感染病毒前相比,感染病毒1周后,TCONS_00016478沉默慢病毒组AERP缩短(80.667±1.453 vs 71.750±2.411,t=3.168,P=0.034);假手术组(80.083±1.044 vs 79.333±0.333,t=0.684,P=0.531)与阴性对照慢病毒组(81.083±2.599 vs 80.000±2.646,t=0.022,P=0.983)手术前后AERP差异无统计学意义。TCONS_00016478沉默慢病毒组病毒感染1周后,3只诱发房颤,假手术组和阴性对照慢病毒组均未诱发房颤。假手术组、阴性对照慢病毒组及TCONS_00016478沉默慢病毒组心房肌TCONS_00016478(F=126.042,P<0.001)、PGC-1α(F=43.998,P<0.001)、PPARγ(F=417.863,P<0.001)、葡萄糖转运蛋白-4(GLUT4)(F=98.043,P<0.001)及碱棕榈酰转移酶-1(CPT1)(F=105.096,P< 0.001)基因表达量均差异有统计学意义。与假手术组相比,TCONS_00016478沉默慢病毒组心房肌TCONS_00016478在基因水平表达量降低(P<0.001),与能量代谢相关的蛋白质PGC-1α、PPARγ、GLUT4、CPT1在基因水平表达量降低(P<0.001),蛋白质水平表达量亦下降,差异有统计学意义(P<0.001);生物信息学分析表明,lncRNA TCONS_00016478及其靶基因PGC-1α 与心肌能量代谢密切相关。心房肌细胞糖原和脂滴异常沉积。 结论 TCONS_00016478通过调控PGC-1α/PPARγ 信号通路影响心房肌能量代谢重构,进而调控房颤发生。
中图分类号:
[1] Lip GY, Tse HF, Lane DA. Atrial fibrillation[J]. Lancet, 2012, 379(9816): 648-661. [2] Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Europace, 2016, 18(11): 1609-1678. [3] Schoonderwoerd BA, Van Gelder IC, Van Veldhuisen DJ, et al. Electrical and structural remodeling: role in the genesis and maintenance of atrial fibrillation[J]. Prog Cardiovasc Dis, 2005, 48(3): 153-168. [4] Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives[J]. J Am Coll Cardiol, 2014, 63(22): 2335-2345. [5] van Bilsen M, Smeets PJ, Gilde AJ, et al. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome?[J]. Cardiovasc Res, 2004, 61(2): 218-226. [6] Kretz M, Webster DE, Flockhart RJ, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR[J]. Genes & development, 2012, 26(4): 338-343. [7] Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2): 358-369. [8] Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013): 76-79. [9] Sallam T, Sandhu J, Tontonoz P. Long noncoding RNA discovery in cardiovascular disease: decoding form to function[J]. Circulation Research, 2018, 122(1): 155-166. [10] Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy[J]. Nature, 2014, 514(7520): 102-106. [11] Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure[J]. Circ Res, 2014, 114(10): 1569-1575. [12] Wang K, Long B, Zhou LY, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation[J]. Nat Commun, 2014, 5: 3596. doi: 10.1038/ncomms4596. [13] Li Z, Wang X, Wang W, et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol, 2017, 108: 73-85. doi: 10.1016/j.yjmcc.2017.05.009. [14] Wang W, Wang X, Zhang Y, et al. Transcriptome analysis of canine cardiac fat pads: involvement of two novel long non-coding RNAs in atrial fibrillation neural remodeling[J]. J Cell Biochem, 2015, 116: 809-821. doi: 10.1002/jcb.25037. [15] Ruan Z, Sun X, Sheng H, et al. Long non-coding RNA expression profile in atrial fibrillation[J]. Int J Clin Exp Pathol, 2015, 8(7): 8402-8410. [16] Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha[J]. Int J Obes, 2005, 29: 5-9. doi: 10.1038/sj.ijo.0802905. [17] Cannavino J, Brocca L, Sandri M, et al. PGC1-α over-expression prevents metabolicalterations and soleus muscle atrophy in hindlimb unloaded mice[J]. J Physiol, 2014, 592(20): 4575-4589. [18] Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators[J]. Novartis Found Symp, 2007, 287: 60-69. doi: 10.1002/9780470985571.ch2. [19] Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev, 2010, 90(1): 207-258. [20] Soccio RE, Li Z, Chen ER, et al. Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice[J]. J Clin Invest, 2017, 127(4): 1451-1462. [21] Kurhe Y, Mahesh R. Pioglitazone, a PPARγ agonist rescues depression associated with obesity using chronic unpredictable mild stress model in experimental mice[J]. Neurobiol Stress, 2016, 3: 114-121. doi: org/10.1016/j.ynstr. [22] Karsdal MA, Henriksen K, Genovese F, et al. Serum endotrophin identifies optimal responders to PPARγ agonists in type 2 diabetes[J]. Diabetologia, 2017, 60(1): 50-59. [23] Liu GZ, Hou TT, Yuan Y, et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway[J]. Br J Pharmacol, 2016, 173(6): 1095-1109. [24] Townsend KL, An D, Lynes MD, et al. Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake[J]. Antioxid Redox Signal, 2013, 19(3): 243-257. [25] Chen YP, Tsai CW, Shen CY, et al. Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts[J]. J Nutr Biochem, 2016, 31: 137-149. doi: 10.1016/j.jnutbio.2016.01.007. [26] Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs[J]. Nature, 2012, 482(7385): 339-346. |
[1] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
[2] | 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5. |
[3] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[4] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
[5] | 黄柏松,丛洪良. 1 430例中年中危血栓栓塞风险心房颤动抗凝治疗的方案[J]. 山东大学学报 (医学版), 2021, 59(10): 47-56. |
[6] | 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67. |
[7] | 李涵,付婷婷,张磊,延冰,孙涛,郭峰,尹晓. 过氧化物酶增殖物激活受体γ激动剂对24例肥胖症患者米色脂肪细胞分化的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 8-13. |
[8] | 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75. |
[9] | 陈琳琳,衣少雷,王蔚宗,李展,张勇,张玉娇,任满意,解新星,刘同宝,侯应龙. 预测心房颤动患者射频消融术后复发的危险因素[J]. 山东大学学报 (医学版), 2019, 57(3): 49-57. |
[10] | 闫素真,杜鲁涛,王丽丽,王传新. 血清lncRNA UCA1在食管鳞癌的表达及临床意义[J]. 山东大学学报 (医学版), 2018, 56(6): 41-46. |
[11] | 张凯, 梁飞, 韩波, 马晓春, 朱小龙, 张军, 张涛, 邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融术与单纯射频消融改良迷宫Ⅲ术治疗合并风湿性二尖瓣病变的心房颤动比较[J]. 山东大学学报(医学版), 2015, 53(5): 66-70. |
[12] | 姜蕾, 张磊, 梁江久. 长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达[J]. 山东大学学报(医学版), 2015, 53(5): 21-26. |
[13] | 张风雷, 郑曼, 张琦, 顾磊, 徐新生. 代谢综合征与P波离散度关系的探讨[J]. 山东大学学报(医学版), 2015, 53(2): 52-55. |
[14] | 韩波1,2,王建春2,张涛2,朱小龙2,李丛2,王正军2,赵勇2,邹承伟2. 风湿性心房颤动患者左心房组织中钙蛋白酶-2的表达[J]. 山东大学学报(医学版), 2014, 52(4): 93-96. |
[15] | 程显峰,梁飞,张骞,朱小龙,张海洲,张涛,韩波,邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融治疗心房颤动[J]. 山东大学学报(医学版), 2013, 51(2): 53-56. |
|