您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (4): 1-8.doi: 10.6040/j.issn.1671-7554.0.2018.706

• 基础医学 •    

TCONS_00016478 通过PGC1-α/ PPARγ信号通路影响实验性房颤兔心房肌能量代谢重构的机制

李建华,李展,贾晓萌,杜娟娟,马神洲,刘东路,张勇,张玉娇,侯应龙   

  1. 山东大学附属千佛山医院心内科, 山东 济南 250014
  • 发布日期:2022-09-27
  • 通讯作者: 侯应龙. E-mail: houyinglong2010@ hotmail.com
  • 基金资助:
    泰山学者岗位建设基金(ts201511104);国家自然科学基金(81770334);山东省自然科学基金(ZR2015HL003,ZR2017PH023,ZR2017LH003)

Roles and mechanisms of TCONS_00016478 in atrial energy metabolic remodeling by regulating PGC-1α/ PPARγ pathway in rabbit models of atrial fibrillation

LI Jianhua, LI Zhan, JIA Xiaomeng, DU Juanjuan, MA Shenzhou, LIU Donglu, ZHANG Yong, ZHANG Yujiao, HOU Yinglong   

  1. Department of Cardiology, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨长链非编码RNA(lncRNA)TCONS_00016478通过调控过氧化物酶增殖物激活受体γ 辅助激活因子1α(PGC-1α)/过氧化物酶增殖物激活受体γ(PPARγ)信号通路影响实验性房颤兔心房肌能量代谢重构的机制。 方法 采用高通量二代测序技术检测房颤兔/非房颤兔右心房组织差异性表达lncRNAs,成年新西兰白兔18只,体质量2.0~2.5 kg,雌雄不拘,随机分为假手术组(行开胸术但不注射病毒)、阴性对照慢病毒组(右心房注射阴性对照慢病毒)和TCONS_00016478沉默慢病毒组(右心房注射TCONS_00016478沉默慢病毒),每组6只。感染病毒前及感染1周后分别使用心脏电生理仪行程序电刺激,检测心房有效不应期(AERP)与房颤诱发性。感染病毒1周后处死动物,取心房肌组织,采用qRT-PCR法检测RNA的表达,采用Western blotting法检测蛋白质的表达,采用PAS染色法和油红O染色法分别检测糖原和脂滴沉积。 结果 与感染病毒前相比,感染病毒1周后,TCONS_00016478沉默慢病毒组AERP缩短(80.667±1.453 vs 71.750±2.411,t=3.168,P=0.034);假手术组(80.083±1.044 vs 79.333±0.333,t=0.684,P=0.531)与阴性对照慢病毒组(81.083±2.599 vs 80.000±2.646,t=0.022,P=0.983)手术前后AERP差异无统计学意义。TCONS_00016478沉默慢病毒组病毒感染1周后,3只诱发房颤,假手术组和阴性对照慢病毒组均未诱发房颤。假手术组、阴性对照慢病毒组及TCONS_00016478沉默慢病毒组心房肌TCONS_00016478(F=126.042,P<0.001)、PGC-1α(F=43.998,P<0.001)、PPARγ(F=417.863,P<0.001)、葡萄糖转运蛋白-4(GLUT4)(F=98.043,P<0.001)及碱棕榈酰转移酶-1(CPT1)(F=105.096,P< 0.001)基因表达量均差异有统计学意义。与假手术组相比,TCONS_00016478沉默慢病毒组心房肌TCONS_00016478在基因水平表达量降低(P<0.001),与能量代谢相关的蛋白质PGC-1α、PPARγ、GLUT4、CPT1在基因水平表达量降低(P<0.001),蛋白质水平表达量亦下降,差异有统计学意义(P<0.001);生物信息学分析表明,lncRNA TCONS_00016478及其靶基因PGC-1α 与心肌能量代谢密切相关。心房肌细胞糖原和脂滴异常沉积。 结论 TCONS_00016478通过调控PGC-1α/PPARγ 信号通路影响心房肌能量代谢重构,进而调控房颤发生。

关键词: 心房颤动, 心房肌能量代谢重构, 长链非编码RNA, TCONS_00016478, 过氧化物酶增殖物激活受体γ 辅助激活因子1α, 过氧化物酶增殖物激活受体γ

Abstract: Objective To investigate the roles and mechanisms of TCONS_00016478 in atrial energy metabolic remodeling by regulating peroxisome proliferator-activated receptor gamma coactivator 1-alpha(PGC-1α)/ peroxisome proliferator-activated receptor gamma(PPARγ)pathway in rabbit models of atrial fibrillation(AF). Methods The long non-coding RNA(lncRNA)expression profiles of right atria were investigated in AF and non-AF rabbit models using RNA sequencing technique. A total of 18 male and female adult New Zealand white rabbits weighting 2.0~2.5 kg were randomly divided into 3 groups: sham group(n=6, received thoracotomy only), negative control group(n=6, right atria infected with negative control lentiviruses), and lenti-RNAi-TCONS_00016478 group(n=6, right atria infected with TCONS_00016478 silencing lentiviruses). The atrial effective refractory period(AERP)and AF inducibility were measured before infection and 7 d after infection. After 7 d infection, the rabbits were sacrificed and atrial samples were collected. The gene and protein expressions were detected with qRT-PCR and Western blotting, respectively. The accumulation of glycogens and lipid droplets in atrial myocytes were assessed with periodic acid-Schiff(PAS)and Oil Red O staining, respectively. Results After 7 d infection, the AERP was significantly shortened in lenti-RNAi-TCONS_00016478 group(80.667±1.453 vs 71.750±2.411, t=3.168, P=0.034); however, no significant difference was found in the sham group(80.083±1.044 vs 79.333±0.333, t=0.684, P=0.531)and negative control group(81.083±2.599 vs 80.000±2.646, t=0.022, P=0.983). AF was induced in 3 rabbits in lenti-RNAi-TCONS_00016478 group, while no AF was induced in the sham and negative control groups. There were significant differences in the gene and protein expressions of TCONS_00016478(F=126.042, P<0.001), PGC1-α(F=43.998, P<0.001), PPARγ(F=417.863, P<0.001), glucose transporter type 4(GLUT4)(F=98.043, P<0.001) and carnitine palmitoyltransferase 1(CPT1)(F=105.096, P<0.001) among the 3 groups. Compared with the sham group, the lenti-RNAi-TCONS_00016478 group had lower expressions of TCONS_00016478, PGC1-α, PPARγ, GLUT4, and CPT1(all P<0.001), Bioinformatic analysis showed lncRNA TCONS_00016478 and PGC-1α were closely related to myocardial energy metabolism. But significantly increased accumulation of glycogens and lipid droplets in atrial myocytes. Conclusion TCONS_00016478 modulates atrial energy metabolic remodeling during AF through PGC-1α/PPARγ pathway.

Key words: Atrial fibrillation, Atrial energy metabolic remodeling, Long non-coding RNA, TCONS_00016478, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, Peroxisome proliferator-activated receptor gamma

中图分类号: 

  • R541.7
[1] Lip GY, Tse HF, Lane DA. Atrial fibrillation[J]. Lancet, 2012, 379(9816): 648-661.
[2] Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Europace, 2016, 18(11): 1609-1678.
[3] Schoonderwoerd BA, Van Gelder IC, Van Veldhuisen DJ, et al. Electrical and structural remodeling: role in the genesis and maintenance of atrial fibrillation[J]. Prog Cardiovasc Dis, 2005, 48(3): 153-168.
[4] Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives[J]. J Am Coll Cardiol, 2014, 63(22): 2335-2345.
[5] van Bilsen M, Smeets PJ, Gilde AJ, et al. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome?[J]. Cardiovasc Res, 2004, 61(2): 218-226.
[6] Kretz M, Webster DE, Flockhart RJ, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR[J]. Genes & development, 2012, 26(4): 338-343.
[7] Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011, 147(2): 358-369.
[8] Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013): 76-79.
[9] Sallam T, Sandhu J, Tontonoz P. Long noncoding RNA discovery in cardiovascular disease: decoding form to function[J]. Circulation Research, 2018, 122(1): 155-166.
[10] Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy[J]. Nature, 2014, 514(7520): 102-106.
[11] Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure[J]. Circ Res, 2014, 114(10): 1569-1575.
[12] Wang K, Long B, Zhou LY, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation[J]. Nat Commun, 2014, 5: 3596. doi: 10.1038/ncomms4596.
[13] Li Z, Wang X, Wang W, et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol, 2017, 108: 73-85. doi: 10.1016/j.yjmcc.2017.05.009.
[14] Wang W, Wang X, Zhang Y, et al. Transcriptome analysis of canine cardiac fat pads: involvement of two novel long non-coding RNAs in atrial fibrillation neural remodeling[J]. J Cell Biochem, 2015, 116: 809-821. doi: 10.1002/jcb.25037.
[15] Ruan Z, Sun X, Sheng H, et al. Long non-coding RNA expression profile in atrial fibrillation[J]. Int J Clin Exp Pathol, 2015, 8(7): 8402-8410.
[16] Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha[J]. Int J Obes, 2005, 29: 5-9. doi: 10.1038/sj.ijo.0802905.
[17] Cannavino J, Brocca L, Sandri M, et al. PGC1-α over-expression prevents metabolicalterations and soleus muscle atrophy in hindlimb unloaded mice[J]. J Physiol, 2014, 592(20): 4575-4589.
[18] Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators[J]. Novartis Found Symp, 2007, 287: 60-69. doi: 10.1002/9780470985571.ch2.
[19] Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev, 2010, 90(1): 207-258.
[20] Soccio RE, Li Z, Chen ER, et al. Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice[J]. J Clin Invest, 2017, 127(4): 1451-1462.
[21] Kurhe Y, Mahesh R. Pioglitazone, a PPARγ agonist rescues depression associated with obesity using chronic unpredictable mild stress model in experimental mice[J]. Neurobiol Stress, 2016, 3: 114-121. doi: org/10.1016/j.ynstr.
[22] Karsdal MA, Henriksen K, Genovese F, et al. Serum endotrophin identifies optimal responders to PPARγ agonists in type 2 diabetes[J]. Diabetologia, 2017, 60(1): 50-59.
[23] Liu GZ, Hou TT, Yuan Y, et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway[J]. Br J Pharmacol, 2016, 173(6): 1095-1109.
[24] Townsend KL, An D, Lynes MD, et al. Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake[J]. Antioxid Redox Signal, 2013, 19(3): 243-257.
[25] Chen YP, Tsai CW, Shen CY, et al. Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts[J]. J Nutr Biochem, 2016, 31: 137-149. doi: 10.1016/j.jnutbio.2016.01.007.
[26] Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs[J]. Nature, 2012, 482(7385): 339-346.
[1] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[2] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[3] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
[4] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
[5] 黄柏松,丛洪良. 1 430例中年中危血栓栓塞风险心房颤动抗凝治疗的方案[J]. 山东大学学报 (医学版), 2021, 59(10): 47-56.
[6] 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67.
[7] 李涵,付婷婷,张磊,延冰,孙涛,郭峰,尹晓. 过氧化物酶增殖物激活受体γ激动剂对24例肥胖症患者米色脂肪细胞分化的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 8-13.
[8] 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75.
[9] 陈琳琳,衣少雷,王蔚宗,李展,张勇,张玉娇,任满意,解新星,刘同宝,侯应龙. 预测心房颤动患者射频消融术后复发的危险因素[J]. 山东大学学报 (医学版), 2019, 57(3): 49-57.
[10] 闫素真,杜鲁涛,王丽丽,王传新. 血清lncRNA UCA1在食管鳞癌的表达及临床意义[J]. 山东大学学报 (医学版), 2018, 56(6): 41-46.
[11] 张凯, 梁飞, 韩波, 马晓春, 朱小龙, 张军, 张涛, 邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融术与单纯射频消融改良迷宫Ⅲ术治疗合并风湿性二尖瓣病变的心房颤动比较[J]. 山东大学学报(医学版), 2015, 53(5): 66-70.
[12] 姜蕾, 张磊, 梁江久. 长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达[J]. 山东大学学报(医学版), 2015, 53(5): 21-26.
[13] 张风雷, 郑曼, 张琦, 顾磊, 徐新生. 代谢综合征与P波离散度关系的探讨[J]. 山东大学学报(医学版), 2015, 53(2): 52-55.
[14] 韩波1,2,王建春2,张涛2,朱小龙2,李丛2,王正军2,赵勇2,邹承伟2. 风湿性心房颤动患者左心房组织中钙蛋白酶-2的表达[J]. 山东大学学报(医学版), 2014, 52(4): 93-96.
[15] 程显峰,梁飞,张骞,朱小龙,张海洲,张涛,韩波,邹承伟. 同期射频消融改良迷宫Ⅲ术+心脏神经节丛消融治疗心房颤动[J]. 山东大学学报(医学版), 2013, 51(2): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!