您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (5): 21-26.doi: 10.6040/j.issn.1671-7554.0.2014.1002

• 基础医学 • 上一篇    下一篇

长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达

姜蕾, 张磊, 梁江久   

  1. 山东大学附属千佛山医院保健心内一科, 山东 济南 250014
  • 收稿日期:2014-12-29 修回日期:2015-04-01 出版日期:2015-05-10 发布日期:2015-05-10
  • 通讯作者: 梁江久。E-mail:liangjiangjiu@163.com E-mail:liangjiangjiu@163.com
  • 基金资助:
    山东省自然科学基金(ZR2010HM116)

Expression profiles of long noncoding RNAs in rat myocardial hypertrophy induced by pressure overload

JIANG Lei, ZHANG Lei, LIANG Jiangjiu   

  1. Department of Cardiovascular Health Care No.1, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China
  • Received:2014-12-29 Revised:2015-04-01 Online:2015-05-10 Published:2015-05-10

摘要: 目的 探讨长链非编码RNA(lncRNA)在腹主动脉缩窄术大鼠心肌肥厚和正常大鼠心肌中的差异表达。方法 构建腹主动脉缩窄大鼠模型,术后4周测量大鼠超声心动图参数、左室质量指数,通过HE染色观察心肌细胞的面积,采用qRT-PCR法检测心肌肥厚相关因子ANF、β-MHC mRNA的表达水平,验证压力超负荷模型构建情况。采用lncRNA芯片技术检测lncRNA表达谱,筛选出具有差异性表达的lncRNA,并通过qRT-PCR验证芯片结果准确性。利用lncRNA与mRNA特异性表达的标准化信号强度,构建lncRNA与靶基因的共表达网络。结果 大鼠心肌肥厚中共检测出6 969条lncRNA,其中显著上调表达80条,显著下调表达172条。经qRT-PCR检测显示,在大鼠心肌肥厚中MRAK134201下调表达,X89963上调表达,与芯片结果一致。构建共表达网络发现,与XR_008680共表达的蛋白编码基因111个。结论 lncRNA在压力超负荷性大鼠心脏组织中的表达谱发生变化,提示lncRNA可能在心肌肥厚的发生发展中具有一定的作用。

关键词: 心肌肥厚, 长链非编码RNA, 大鼠, 长链非编码RNA芯片, 压力超负荷

Abstract: Objective To analyze the expressions of long noncoding RNA (lncRNA) in rat myocardial hypertrophy induced by abdominal aortic banding and in healthy rat hearts. Methods Rat models with myocardial hypertrophy induced by abdominal aortic banding were established. After 4 weeks, the echocardiographic data, left ventricular mass index and the myocyte cross-section were tested. Expressions of ANF and β-MHC mRNA were determined with quantitative real-time polymerase chain reaction (qRT-PCR). Differences of lncRNA expression profiles were inspected with lncRNA microarray and validated with qRT-PCR. Gene co-expression network was built with normalized signal intensity of specifically expressed lncRNAs and mRNAs. Results We identified 6 969 lncRNAs, among which 80 were significantly up-regulated and 172 down-regulated. The expressions of lncRNA MRAK134201 and X89963 verified by qRT-PCR and microarray data were consistent. The network constructed from lncRNA XR_008680 was co-expressed with 111 coding mRNAs. Conclusion Long noncoding RNAs are differentially expressed in rat cardiac hypertrophy models, indicating that lncRNAs might play a role in the pathogenesis of myocardial hypertrophy.

Key words: Pressure overload, LncRNA array, Rats, Myocardial hypertrophy, Long noncoding RNA

中图分类号: 

  • R541
[1] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4):629-641.
[2] Tardiff JC. Cardiac hypertrophy:stressing out the heart[J]. J Clin Invest, 2006, 116(6):1467-1470.
[3] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res, 2001, 29(9):45.
[4] Liao Q, Liu C, Yuan X, et al. Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network[J]. Nucleic Acids Res, 2011, 39(9):3864-3878.
[5] Huarte M, Rinn JL. Large non-coding RNAs:missing links in cancer?[J]. Hum Mol Genet, 2010, 19(2):152-161.
[6] Arima T, Matsuda T, Takagi N, et al. Association of IGF2 and H19 imprinting with choriocarcinoma development[J]. Cancer Genet Cytogenet, 1997, 93(1):39-47.
[7] Tanos V, Ariel I, Prus D, et al. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium[J]. Int J Gynecol Cancer, 2004, 14(3):521-525.
[8] Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth[J]. PLoS One, 2007, 2(9):845.
[9] Ariel I, de Groot N, Hochberg A. Imprinted H19 gene expression in embryogenesis and human cancer:the oncofetal connection[J]. Am J Med Genet, 2000, 91(1):46-50.
[10] Ayesh S, Matouk I, Schneider T, et al. Possible physiological role of H19 RNA[J]. Mol Carcinog, 2002, 35(2):63-74.
[11] Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment[J]. Cell, 2013, 152(3):570-583.
[12] Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse[J]. Dev Cell, 2013, 24(2):206-214.
[13] Cooper C, Vincett D, Yan Y, et al. Steroid Receptor RNA Activator bi-faceted genetic system:Heads or Tails?[J]. Biochimie, 2011, 93(11):1973-1980.
[14] Li D, Chen G, Yang J, et al. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure[J]. PLoS One, 2013, 8(10):77938.
[15] Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure[J]. Circ Res, 2014, 114(10):1569-1575.
[16] Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489[J]. Circ Res, 2014, 114(9):1377-1388.
[17] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs:insights into functions[J]. Nat Rev Genet, 2009, 10(3):155-159.
[18] Sodhi K, Wu CC, Cheng J, et al. CYP4A2-induced hypertension is 20-hydroxyeicosatetraenoic acid- and angiotensin II-dependent[J]. Hypertension, 2010, 56(5):871-878.
[19] Latchman DS. Heat shock proteins and cardiac protection[J]. Cardiovasc Res, 2001, 51(4):637-646.
[20] Fan GC, Chu G, Kranias EG. Hsp20 and its cardioprotection[J]. Trends Cardiovasc Med, 2005, 15(4):138-141.
[21] Eckert D, Biermann K, Nettersheim D, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors[J]. BMC Dev Biol, 2008, 8:106.
[22] Li SQ, Wang HM, Cao XF. Potential clinical insights into microRNAs and their target genes in esophageal carcinoma[J]. Biomarkers, 2011, 16(8):629-636.
[23] Fujita T, Miyamoto S, Onoyama I, et al. Expression of lysophosphatidic acid receptors and vascular endothelial growth factor mediating lysophosphatidic acid in the development of human ovarian cancer[J]. Cancer Lett, 2003, 192(2):161-169.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[3] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[4] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[5] 张亮,徐敏,庄向华,娄福臣,娄能俊,吕丽,郭文娟,郑凤杰,陈诗鸿. 内质网应激与凋亡在糖尿病周围神经病变中的表达变化[J]. 山东大学学报(医学版), 2017, 55(8): 13-17.
[6] 刘芳,乔蕾,陈文超,杨丽娜. 大蒜素后处理对大鼠心肌缺血-再灌注损伤的保护作用[J]. 山东大学学报(医学版), 2017, 55(7): 6-11.
[7] 谢海滨,武群政,刘少壮,黄鑫,程玉刚,胡三元,张光永. 肝线粒体相关内质网膜在袖状胃切除术改善糖尿病大鼠胰岛素敏感性中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 36-40.
[8] 陈怡憓,刘学蔚,侯绪浩,孙钦峰. 醛化白及多糖/羟丙基壳聚糖/纳米珍珠层粉复合材料促下颌骨缺损修复的动物实验研究[J]. 山东大学学报(医学版), 2016, 54(6): 7-11.
[9] 李红志,刘静,宋岩,迟令懿,刘玉光. 利拉鲁肽对脊髓损伤修复作用的探讨[J]. 山东大学学报(医学版), 2016, 54(4): 1-5.
[10] 任宝鑫,马云峰,刘殿伟,李卓,姜勇. Wnt3a在大鼠蛛网膜下腔出血后早期脑损伤中对神经细胞自噬和凋亡的影响[J]. 山东大学学报(医学版), 2016, 54(10): 11-15.
[11] 赵蕙琛,柴家超,张亮,袁明振,彭力,刘元涛. 糖尿病大鼠阴茎海绵体硫化氢含量及其合成酶表达的变化[J]. 山东大学学报(医学版), 2016, 54(10): 25-28.
[12] 陈志新,王颖,曹新冉, 黑乃豪,李俊龙,董波,关广聚. 非肽类Ang(1-7)受体激动剂AVE0991对大鼠糖尿病肾病的保护作用[J]. 山东大学学报(医学版), 2016, 54(10): 29-33.
[13] 张东青, 王勇, 陈守臻, 朱耀丰, 史本康. 糖尿病大鼠尿道α1肾上腺素能受体与神经生长因子表达的改变及其对尿道功能的影响[J]. 山东大学学报(医学版), 2015, 53(9): 30-34.
[14] 冯潇雨, 张洪美, 车选强, 康东红. 成骨细胞刺激因子对去卵巢骨质疏松大鼠的治疗效果[J]. 山东大学学报(医学版), 2015, 53(7): 8-12.
[15] 李明华, 王甲莉, 徐峰, 袁秋环, 刘宝山, 庞佼佼, 张运, 陈玉国. 急性高血糖通过抑制ALDH2活性加重大鼠心肌缺血/再灌注损伤[J]. 山东大学学报(医学版), 2015, 53(5): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!