您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (5): 15-20.doi: 10.6040/j.issn.1671-7554.0.2014.852

• 基础医学 • 上一篇    下一篇

急性高血糖通过抑制ALDH2活性加重大鼠心肌缺血/再灌注损伤

李明华1,2, 王甲莉1, 徐峰1, 袁秋环1, 刘宝山1,2, 庞佼佼1,2, 张运2, 陈玉国1   

  1. 1. 山东大学齐鲁医院急诊科, 急性胸痛中心, 山东省卫生系统急危重症医学重点实验室, 山东 济南 250012;
    2. 教育部和卫生部心血管重构与功能研究重点实验室, 山东 济南 250012
  • 收稿日期:2014-11-21 修回日期:2015-03-18 出版日期:2015-05-10 发布日期:2015-05-10
  • 通讯作者: 陈玉国。E-mail:chen919085@126.com E-mail:chen919085@126.com
  • 基金资助:
    国家自然科学基金(81170136,81100147,81300103,81300219);泰山学者建设工程专项经费(ts20130911);高等学校博士学科点专项科研基金(20130131110048);山东省科技发展计划(2011GSF11806)

Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury by inhibiting aldehyde dehydrogenase 2 activity in rats

LI Minghua1,2, WANG Jiali1, XU Feng1, YUAN Qiuhuan1, LIU Baoshan1,2, PANG Jiaojiao1,2, ZHANG Yun2, CHEN Yuguo1   

  1. 1. Department of Emergency & Chest Pain Center, Qilu Hospital of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Jinan 250012, Shandong, China;
    2. Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Jinan 250012, Shandong, China
  • Received:2014-11-21 Revised:2015-03-18 Online:2015-05-10 Published:2015-05-10

摘要: 目的 探讨乙醛脱氢酶2(ALDH2)在急性高血糖加重大鼠心肌缺血/再灌注(I/R)损伤中的活性变化及作用。方法 48只雄性Wistar大鼠随机分为假手术组(SHAM组)、盐水对照组(CON组)、高糖组(HG组)和高糖+Alda-1干预组(HG+Alda-1组),每组12只。采用左冠脉前降支(LAD)结扎缺血30 min,再灌注1 h,建立大鼠心肌I/R模型。在建立大鼠心肌I/R模型同时,经颈静脉给予首负荷剂量50%葡萄糖(3 g/kg),使大鼠血糖浓度迅速升高至20~28 mmol/L,持续微量泵入[4 mL/(kg·h)],使大鼠血糖浓度维持在20~28 mmol/L,至再灌注结束。SHAM组和CON组给予0.9%NaCl(6 mL/kg)。HG+Alda-1组给予Alda-1 (8.5 mg/kg)微量泵入,至再灌注结束。再灌注结束后取心脏,采用比色法检测ALDH2活性的变化,HE染色观察心肌组织形态学变化,TTC染色法检测心肌梗死面积,TUNEL法检测心肌细胞凋亡情况。结果 与CON组相比,HG组在缺血期和再灌注期血糖浓度明显升高[(23.4±0.21) vs (5.8±0.21) mmol/L, P<0.01]。HG组ALDH2活性明显低于CON组[(69.1±5.16)% vs (87.0±4.30)%, P<0.05]。HG组心肌梗死面积明显高于CON组[(38.2±3.30)% vs (26.8±2.53)%, P<0.05];HG+Alda-1组心肌梗死面积明显低于HG组[(27.8±2.50)% vs (38.2±3.30)%, P<0.05]。HG组心肌细胞凋亡指数明显高于CON组[(16.1±0.83)% vs (13.1±0.39)%, P<0.05];HG+Alda-1组心肌细胞凋亡指数明显低于HG组[(13.6±0.51)% vs (16.1±0.83)%, P<0.05]。结论 急性高血糖可加重I/R大鼠的心肌梗死面积及心肌细胞凋亡,使心肌ALDH2的活性降低;增强ALDH2活性可显著减少急性高血糖大鼠I/R后的心肌梗死面积及心肌细胞凋亡。

关键词: 急性高血糖, 大鼠, 心肌再灌注损伤, 心肌缺血, 乙醛脱氢酶2

Abstract: Objective To investigate the activity changes and actions of aldehyde dehydrogenase 2 (ALDH2) in myocardial ischemia/reperfusion injury exacerbated by acute hyperglycemia. Methods A total of 48 male Wistar rats were randomly divided into 4 groups: sham operation (SHAM) group, normal saline control (CON) group, highblood glucose (HG) group, and HG with Alda-1 administration (HG+Alda-1) group, with 12 animals in each group. The left anterior descending artery (LAD) was occluded for 30 minutes followed by 1 hour reperfusion to establish myocardial ischemia-reperfusion rat models. Acute hyperglycemia rat models were established via jugular vein injection of 50% glucose (3 g/kg) during the ischemia period. Blood glucose levels were maintained at 20-28 mmol/L throughout the experiment by administration of glucose with trace pumping[4 mL/(kg·h)] during ischemia and reperfusion period. The rats in CON group and HG+Alda-1 group were given normal saline (6 mL/kg). The rats in HG+Alda-1 group were given Alda-1 (8.5 mg/kg) with trace pumping during ischemia and reperfusion. After reperfusion, ALDH2 activity of heart was detected with colorimetric method, changes of myocardial tissue morphology were observed with HE staining, myocardial infarction size was determined with TTC staining, and myocardial cell apoptosis was tested with TUNEL method. Results Blood glucose level was significantly increased in HG group compared with that of CON group [(23.4±0.21) vs (5.8±0.21)mmol/L, P<0.01]. Compared with CON group, the activity of ALDH2 in HG group was markedly decreased [(69.1±5.16)% vs (87.0±4.30)%, P<0.05]. Myocardial infarct size of HG group was remarkably increased compared with the CON group [(38.2±3.30)% vs (26.8±2.53)%, P<0.05]. Compared with HG group, myocardial infarct size of HG+Alda-1 group was notedly decreased [(27.8±2.50)% vs (38.2±3.30)%, P<0.05]. Myocardial apoptosis index of HG group was significantly higher than that of CON group [(16.1±0.83)% vs (13.1±0.39)%, P<0.05]. Compared with HG group, myocardial apoptosis of HG+Alda-1 group was significantly reduced [(13.6±0.51)% vs (16.1±0.83)%, P<0.05]. Conclusion Acute hyperglycemia significantly increases myocardial infarct size and myocardial apoptosis induced by myocardial ischemia-reperfusion injury and reduced ALDH2 activity, while enhanced ALDH2 activity can markedly decrease myocardial infarct size and myocardial apoptosis during ischemia-reperfusion injury in acute hyperglycemia rats.

Key words: Acute hyperglycemia, Myocardial ischemia, Myocardial reperfusion injury, Aldehyde dehydrogenase 2, Rats

中图分类号: 

  • R541.4
[1] Deedwania P, Kosiborod M, Barrett E, et al. Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism[J]. Circulation, 2008, 117(12): 1610-1619.
[2] Dandona P, Chaudhuri A, Ghanim H. Acute myocardial infarction, hyperglycemia, and insulin[J]. J Am Coll Cardiol, 2009, 53(16): 1437-1439.
[3] Angeli F, Verdecchia P, Karthikeyan G, et al. New-onset hyperglycemia and acute coronary syndrome: a systematic overview and meta-analysis[J]. Curr Diabetes Rev, 2010, 6(2): 102-110.
[4] Ishihara M, Kojima S, Sakamoto T, et al. Acute hyperglycemia is associated with adverse outcome after acute myocardial infarction in the coronary intervention era[J]. Am Heart J, 2005, 150(4): 814-820.
[5] Frantz S, Calvillo L, Tillmanns J, et al. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose[J]. FASEB J, 2005, 19(6): 591-593.
[6] Verma S, Maitland A, Weisel RD, et al. Hyperglycemia exaggerates ischemia-reperfusion-induced cardiomyocyte injury: reversal with endothelin antagonism[J]. J Thorac Cardiovascr Surq, 2002, 123(6): 1120-1124.
[7] Chen CH, Budas GR, Churchill EN, et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J]. Science, 2008, 321(5895): 1493-1495.
[8] Wang J, Wang H, Hao P, et al. Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats[J]. Mol Med, 2011, 17(3-4): 172-179.
[9] Wang HJ, Kang PF, Wu WJ, et al. Changes in cardiac mitochondrial aldehyde dehydrogenase 2 activity in relation to oxidative stress and inflammatory injury in diabetic rats[J]. Mol Med Rep, 2013, 8(2): 686-690.
[10] Di Filippo C, Marfella R, Cuzzocrea S, et al. Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion[J]. Diabetes, 2005, 54(3): 803-810.
[11] Timmer JR, Hoekstra M, Nijsten MW, et al. Prognostic value of admission glycosylated hemoglobin and glucose in nondiabetic patients with ST-segment-elevation myocardial infarction treated with percutaneous coronary intervention[J]. Circulation, 2011, 124(6): 704-711.
[12] Mapanga RF, Rajamani U, Dlamini N, et al. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction[J]. PLoS One, 2012, 7(10): 47322.
[13] SU Hui, SUN Xin, WANG Xiaoming, et al. Effects of hyperglycemia during myocardial ische mia on myocardial ischemia/reperfusion in jury in rats[J]. Chin J Mult Organ Dis Elderly, 2008, 7(3): 220-222.
[14] Gomes KM, Campos JC, Bechara LR, et al. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodeling[J]. Cardiovasc Res, 2014, 103(4): 498-508.
[15] Churchill EN, Disatnik MH, Mochly-Rosen D. Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2[J]. J Mol Cell Cardiol, 2009, 46(2): 278-284.
[16] Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death[J]. N Engl J Med, 2009, 361(16): 1570-1583.
[17] Ma H, Guo R, Yu L, et al. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde[J]. Eur Heart J, 2011, 32(8): 1025-1038.
[18] Koda K, Salazar-Rodriguez M, Corti F, et al. Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells[J]. Circulation, 2010, 122(8): 771-781.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[3] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[4] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[5] 张亮,徐敏,庄向华,娄福臣,娄能俊,吕丽,郭文娟,郑凤杰,陈诗鸿. 内质网应激与凋亡在糖尿病周围神经病变中的表达变化[J]. 山东大学学报(医学版), 2017, 55(8): 13-17.
[6] 刘芳,乔蕾,陈文超,杨丽娜. 大蒜素后处理对大鼠心肌缺血-再灌注损伤的保护作用[J]. 山东大学学报(医学版), 2017, 55(7): 6-11.
[7] 谢海滨,武群政,刘少壮,黄鑫,程玉刚,胡三元,张光永. 肝线粒体相关内质网膜在袖状胃切除术改善糖尿病大鼠胰岛素敏感性中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 36-40.
[8] 陈怡憓,刘学蔚,侯绪浩,孙钦峰. 醛化白及多糖/羟丙基壳聚糖/纳米珍珠层粉复合材料促下颌骨缺损修复的动物实验研究[J]. 山东大学学报(医学版), 2016, 54(6): 7-11.
[9] 李红志,刘静,宋岩,迟令懿,刘玉光. 利拉鲁肽对脊髓损伤修复作用的探讨[J]. 山东大学学报(医学版), 2016, 54(4): 1-5.
[10] 任宝鑫,马云峰,刘殿伟,李卓,姜勇. Wnt3a在大鼠蛛网膜下腔出血后早期脑损伤中对神经细胞自噬和凋亡的影响[J]. 山东大学学报(医学版), 2016, 54(10): 11-15.
[11] 赵蕙琛,柴家超,张亮,袁明振,彭力,刘元涛. 糖尿病大鼠阴茎海绵体硫化氢含量及其合成酶表达的变化[J]. 山东大学学报(医学版), 2016, 54(10): 25-28.
[12] 陈志新,王颖,曹新冉, 黑乃豪,李俊龙,董波,关广聚. 非肽类Ang(1-7)受体激动剂AVE0991对大鼠糖尿病肾病的保护作用[J]. 山东大学学报(医学版), 2016, 54(10): 29-33.
[13] 张东青, 王勇, 陈守臻, 朱耀丰, 史本康. 糖尿病大鼠尿道α1肾上腺素能受体与神经生长因子表达的改变及其对尿道功能的影响[J]. 山东大学学报(医学版), 2015, 53(9): 30-34.
[14] 冯潇雨, 张洪美, 车选强, 康东红. 成骨细胞刺激因子对去卵巢骨质疏松大鼠的治疗效果[J]. 山东大学学报(医学版), 2015, 53(7): 8-12.
[15] 姜蕾, 张磊, 梁江久. 长链非编码RNA在压力超负荷引起的大鼠心肌肥厚中的差异表达[J]. 山东大学学报(医学版), 2015, 53(5): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!