山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (5): 27-30.doi: 10.6040/j.issn.1671-7554.0.2014.998
韩云凤1, 徐华2, 刘骞3, 孙汉辰1, 许丹丹1, 侯为开1, 黄庆先4
HAN Yunfeng1, XU Hua2, LIU Qian3, SUN Hanchen1, XU Dandan1, HOU Weikai1, HUANG Qingxian4
摘要: 目的 利用大鼠糖尿病模型探讨不同血糖水平对心肌GLUT1和GLUT4 mRNA表达的影响。方法 SD大鼠50只,随机选取10只为正常对照组(NC组),另外40只建立糖尿病模型。取建模成功糖尿病大鼠36只(DM组),随机分为糖尿病血糖未控制组(A组,血糖>16.7 mmol/L)、糖尿病血糖控制较差组(B组,血糖14~16.7 mmol/L)、糖尿病血糖控制一般组(C组,血糖10~13.9 mmol/L)和糖尿病血糖控制良好组(D组,血糖<10 mmol/L),每组9只。腹腔注射甘精胰岛素,12周后称体质量,取血测空腹血糖(FBG)、糖化血红蛋白(HbA1c),并将大鼠处死取心肌组织,采用RT-PCR法检测GLUT1和GLUT4 mRNA。结果 与NC组相比,DM组心肌组织GLUT1和GLUT4mRNA表达水平显著降低(P<0.05)。经胰岛素控制血糖后,DM组心肌组织GLUT1和GLUT4mRNA表达水平有所升高,A组、B组、C组和D组表达量依次升高,各组间差异有统计学意义(P<0.05)。DM组心肌组织GLUT1和GLUT4mRNA表达水平与血糖及HbA1c水平呈显著负相关(P<0.05)。结论 血糖长期慢性升高可使DM大鼠心肌组织GLUT1和GLUT4mRNA的表达降低,是机体对长期高血糖的一种代偿性保护。
中图分类号:
[1] Ray KK, Seshasai SRK, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials[J]. The Lancet, 2009, 373(9677): 1765-1772. [2] Leguisamo NM, Lehnen AM, Machado UF, et al. GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome[J]. Cardiovasc Diabetol, 2012, 11(1): 100. [3] Xia Y, Gong L, Liu H, et al. Inhibition of prolyl hydroxylase 3 ameliorates cardiac dysfunction in diabetic cardiomyopathy[J]. Mol Cell Endocrinol, 2015(403): 21-29. doi: 10.1016/j.mce.2015.01.014. Epub 2015 Jan 13. [4] Regina A, Roux F, Revest PA. Glucose transport in immortalized rat brain capillary endothelial cells in vitro: transport activity and GLUT1 expression[J]. Bba-Gen Subjects, 1997, 1335(1-2): 135-143. [5] Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters[J]. Mol Aspects Med, 2013, 34(2): 121-138. [6] von Lewinski D, Rainer PP, Gasser R, et al. Glucose-transporter-mediated positive inotropic effects in human myocardium of diabetic and nondiabetic patients[J]. Metabolism, 2010, 59(7): 1020-1028. [7] Wu H, Zhu Q, Cai M, et al. Effect of inhibiting malonyl-CoA decarboxylase on cardiac remodeling after myocardial infarction in rats[J]. Cardiology, 2014, 127(4): 236-244. [8] Aerni-Flessner L, Abi-Jaoude M, Koenig A, et al. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle[J]. Cardiovasc Diabetol, 2012, 11(1): 63. [9] Lautamäki R, Airaksinen KEJ, Seppänen M, et al. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease a 16-week randomized, double-blind, placebo-controlled study[J]. Diabetes, 2005, 54(9): 2787-2794. [10] Zhan T, Digel M, Küch EM, et al. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins[J]. J Cell Biochem, 2011, 112(3): 849-859. [11] Gejl M, Sndergaard HM, Stecher C, et al. Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes[J]. J Clin Endocr Metab, 2012, 97(7): 1165-1169. [12] Hou WK, Xian YX, Zhang L, et al. Influence of blood glucose on the expression of glucose transporter protein 1 and 3 in the brain of diabetic rats[J]. Chin Med J, 2007, 120(19): 1704-1709. [13] Zhang WW, Zhang L, Hou WK, et al. Dynamic expression of glucose transporters 1 and 3 in the brain of diabetic rats with cerebral ischemic reperfusion[J]. Chin Med J, 2009, 122(17): 1996-2001. [14] Tanner O. Intensive versus conventional glucose control in critically ill patients[J]. J Intensive Care Med Society, 2009, 10(3): 216-217. [15] Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association[J]. J AM Coll Cardiol, 2009, 53(3): 298-304. [16] Xiong WX, Shen Y, Dai DP, et al. Clinical utility of the ratio between circulating fibrinogen and fibrin (ogen) degradation products for evaluating coronary artery disease in type 2 diabetic patients[J]. Chin Med J, 2015, 128(6): 727-732. [17] Espach Y, Lochner A, Strijdom H, et al. ATM protein kinase signaling, type 2 diabetes and cardiovascular disease[J]. Cardiovasc Drugs Ther, 2015, 29(1): 51-58. |
[1] | 孔令群,王学文,王海滨,曹学峰,吴燕彬,张兴元. 副神经节瘤1例报告[J]. 山东大学学报 (医学版), 2020, 1(9): 110-112. |
[2] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14. |
[3] | 张亮,徐敏,庄向华,娄福臣,娄能俊,吕丽,郭文娟,郑凤杰,陈诗鸿. 内质网应激与凋亡在糖尿病周围神经病变中的表达变化[J]. 山东大学学报(医学版), 2017, 55(8): 13-17. |
[4] | 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86. |
[5] | 张振堂,杨洋,韩福俊,陈向华,季晓康,王永超,王淑康,孙苑潆,李敏,陈亚飞,王丽,薛付忠,刘言训. 基于社区2型糖尿病患者的心脑血管事件5年风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 108-113. |
[6] | 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11. |
[7] | 谢海滨,武群政,刘少壮,黄鑫,程玉刚,胡三元,张光永. 肝线粒体相关内质网膜在袖状胃切除术改善糖尿病大鼠胰岛素敏感性中的作用[J]. 山东大学学报(医学版), 2017, 55(10): 36-40. |
[8] | 巩璐伟,周丽珍,苏国海. 培哚普利通过调节Akt-FoxO1通路保护糖尿病性心肌病大鼠心功能损伤[J]. 山东大学学报(医学版), 2017, 55(10): 65-70. |
[9] | 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72. |
[10] | 彭力,强晔,赵蕙琛,陈诗鸿,姚伟东,刘元涛. 2型糖尿病患者应用西格列汀的短期疗效及影响因素[J]. 山东大学学报(医学版), 2016, 54(8): 60-63. |
[11] | 林栋,管庆波. 2型糖尿病男性患者血清睾酮水平低下对非酒精性脂肪肝的影响[J]. 山东大学学报(医学版), 2016, 54(7): 33-37. |
[12] | 史蕊,孙佩,王璐璐,丁琳,夏金,王燕,逄曙光. 鼠神经生长因子联合维生素D、甲钴胺治疗糖尿病周围神经病变的临床观察[J]. 山东大学学报(医学版), 2016, 54(4): 64-67. |
[13] | 木哈达斯·吐尔逊依明,帕它木·莫合买提,托兰古丽·买买提库尔班. CDKAL1(rs10946398 C/A)基因多态性与2型糖尿病易感性关系Meta分析[J]. 山东大学学报(医学版), 2016, 54(2): 75-85. |
[14] | 于宁,高燕燕,咸玉欣,牛佳鹏,李莉,王静,曹彩霞. 艾塞那肽对2型糖尿病合并非酒精性脂肪肝患者肝脏脂肪含量及血清chemerin水平的影响[J]. 山东大学学报(医学版), 2016, 54(11): 51-55. |
[15] | 俞璐,刘强. 体素内不相干运动磁共振成像对糖尿病患者肾脏功能的评价作用[J]. 山东大学学报(医学版), 2016, 54(11): 68-71. |
|