您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (6): 16-24.doi: 10.6040/j.issn.1671-7554.0.2021.0295

• 骨质疏松症新进展专题 • 上一篇    下一篇

氧化应激调控骨质疏松症的研究进展

李敏启1,2,杜娟1,3,杨盼盼1,2,寇雨莹1,2,柳珊珊1,2   

  1. 1. 山东大学骨质疏松与骨矿盐疾病研究中心, 山东 济南 250101;2. 山东大学口腔医学院口腔基础医学教研所, 山东 济南 250101;3. 山东第一医科大学附属省立医院口腔科, 山东 济南 250021
  • 发布日期:2021-06-10
  • 通讯作者: 李敏启. E-mail:liminqi@sdu.edu.cn

Research progress of oxidative stress regulating osteoporosis

LI Minqi1,2, DU Juan1,3, YANG Panpan1,2, KOU Yuying1,2, LIU Shanshan1,2   

  1. 1. Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250101, Shandong, China;
    2. Division of Basic Science of Stomatology, School and Hospital of Stomatology, Shandong University, Jinan 250101, Shandong, China;
    3. Department of Stomatology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2021-06-10

摘要: 骨质疏松症是一种骨量降低、骨组织微结构破坏、骨脆性增加,导致患者容易出现骨折的全身代谢性疾病。伴随着老龄化社会的到来,骨质疏松目前已成为我国中老年人群的重要健康问题。骨质疏松症的发病因素是多方面的,增龄、衰老造成的器官功能减退是主要因素,而“氧化应激衰老理论”迄今仍然是最有据可循的衰老机制假说。综述将围绕氧化应激与骨形成、氧化应激与骨吸收以及抗氧化剂与骨稳态维持等方面,回顾氧化应激诱导骨质疏松症发生发展的相关研究进展。

关键词: 活性氧, 氧化应激, 骨质疏松, 骨形成, 骨吸收

Abstract: Osteoporosis is a systemic metabolic disease with bone mass reduction, bone microstructure destruction and bone fragility increase, which leads to patients susceptibility to fracture. With the aging of population, osteoporosis has become an important health problem for middle-aged and elderly people. The pathogenesis of osteoporosis is multifaceted. Aging and the decline of organ function caused by aging are the main factors. So far, the “oxidative stress aging theory” is still the most well-established hypothesis of aging mechanism. This review will focus on oxidative stress and bone formation, oxidative stress and bone resorption, antioxidants and bone homeostasis maintenance, and review the related research progress of oxidative stress-induced osteoporosis.

Key words: Reactive oxygen species, Oxidative stress, Osteoporosis, Bone formation, Bone resorption

中图分类号: 

  • R574
[1] Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review [J]. Stem Cells Dev, 2015, 24(10): 1150-1163.
[2] Li Q, Gao Z, Chen Y, et al. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells [J]. Protein Cell, 2017, 8(6): 439-445.
[3] Tan J, Xu X, Tong Z, et al. Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis [J]. Bone Res, 2015, 3: 15003. doi: 10.1038/boneres.2015.3.
[4] Wang L, Zhao X, Wei BY, et al. Insulin improves osteogenesis of titanium implants under diabetic conditions by inhibiting reactive oxygen species overproduction via the PI3K-Akt pathway [J]. Biochimie, 2015, 108: 85-93. doi: 10.1016/j.biochi.2014.10.004.
[5] Nastase MV, Janicova A, Wygrecka M, et al. Signaling at the Crossroads: matrix-derived proteoglycan and reactive oxygen species signaling [J]. Antioxid Redox Signal, 2017, 27(12): 855-873.
[6] Shi C, Wu J, Yan Q, et al. Bone marrow ablation demonstrates that estrogen plays an important role in osteogenesis and bone turnover via an antioxidative mechanism [J]. Bone, 2015, 79: 94-104. doi: 10.1016/j.bone.2015.05.034.
[7] Gómez-Puerto MC, Verhagen LP, Braat AK, et al. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation [J]. Autophagy, 2016, 12(10): 1804-1816.
[8] Wang Z, Yang X, Yang S, et al. Sodium fluoride suppress proliferation and induce apoptosis through decreased insulin-like growth factor-I expression and oxidative stress in primary cultured mouse osteoblasts [J]. Arch Toxicol, 2011, 85(11): 1407-1417.
[9] Chen CT, Shih YR, Kuo TK, et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells [J]. Stem Cells, 2008, 26(4): 960-968.
[10] Zhang Y, Yang JH. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts [J]. J Cell Biochem, 2013, 114(11): 2595-2602.
[11] Kalyanaraman H, Schwaerzer G, Ramdani G, et al. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes [J]. Diabetes, 2018, 67(4): 607-623.
[12] Wang YN, Jia TT, Feng Y, et al. Hyperlipidemia impairs osseointegration via the ROS/wnt/β-catenin pathway [J]. J Dent Res, 2021: 22034520983245. doi: 10.1177/0022034520983245.
[13] James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation [J]. Scientifica(Cairo), 2013, 2013: 684736. doi: 10.1155/2013/684736.
[14] O&apos, Donnell VB, Azzi A. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme [J]. Biochem J, 1996, 318(Pt 3): 805-812.
[15] Kim WK, Meliton V, Bourquard N, et al. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress [J]. J Cell Biochem, 2010, 111(5): 1199-1209.
[16] Zhang B, Xie QY, Quan Y, et al. Reactive oxygen species induce cell death via Akt signaling in rat osteoblast-like cell line ROS 17/2.8 [J]. Toxicol Ind Health, 2015, 31(12): 1236-1242.
[17] Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease [J]. Trends Mol Med, 2009, 15(10): 468-477.
[18] Domazetovic V, Marcucci G, Iantomasi T, et al. Oxidative stress in bone remodeling: role of antioxidants [J]. Clin Cases Miner Bone Metab, 2017, 14(2): 209-216.
[19] Bellanti F, Matteo M, Rollo T, et al. Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy [J]. Redox Biol, 2013, 1: 340-346. doi: 10.1016/j.redox.2013.05.003.
[20] Grassi F, Tell G, Robbie-Ryan M, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation[J]. PNAS, 2007, 104(38): 15087-15092.
[21] Wang X, Chen B, Sun J, et al. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model [J]. Metabolism, 2018, 83: 167-176. doi: 10.1016/j.metabol.2018.01.005.
[22] Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids [J]. J Biol Chem, 2007, 282(37): 27285-27297.
[23] An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis [J]. FASEB J, 2019, 33(11): 12515-12527.
[24] Henriksen K, Neutzsky-Wulff AV, Bonewald LF, et al. Local communication on and within bone controls bone remodeling [J]. Bone, 2009, 44(6): 1026-1033.
[25] Mulcahy LE, Taylor D, Lee TC, et al. RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells [J]. Bone, 2011, 48(2): 182-188.
[26] Romagnoli C, Marcucci G, Favilli F, et al. Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like SaOS-2 cells [J]. FEBS J, 2013, 280(3): 867-879.
[27] Filaire E, Toumi H. Reactive oxygen species and exercise on bone metabolism: friend or enemy? [J]. Joint Bone Spine, 2012, 79(4): 341-346.
[28] Chen JR, Shankar K, Nagarajan S, et al. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-kappaB ligand signaling cascade [J]. J Pharmacol Exp Ther, 2008, 324(1): 50-59.
[29] Qin D, Zhang H, Zhang H, et al. Anti-osteoporosis effects of osteoking via reducing reactive oxygen species [J]. J Ethnopharmacol, 2019, 244: 112045. doi: 10.1016/j.jep.2019.112045.
[30] Fontani F, Marcucci G, Iantomasi T, et al. Glutathione, N-acetylcysteine and lipoic acid down-regulate starvation-induced apoptosis, RANKL/OPG ratio and sclerostin in osteocytes: involvement of JNK and ERK1/2 signalling [J]. Calcif Tissue Int, 2015, 96(4): 335-346.
[31] Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1 [J]. EMBO J, 1991, 10(8): 2247-2258.
[32] Oliveira-Marques V, Marinho HS, Cyrne L, et al. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator [J]. Antioxid Redox Signal, 2009, 11(9): 2223-2243.
[33] Sies H, Berndt C, Jones DP. Oxidative Stress [J]. Annu Rev Biochem, 2017, 86: 715-748. doi: 10.1146/annurev-biochem-061516-045037.
[34] Ghonime MG, Shamaa OR, Das S, et al. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function [J]. J Immunol, 2014, 192(8): 3881-3888.
[35] Ha H, Kwak HB, Lee SW, et al. Reactive oxygen species mediate RANK signaling in osteoclasts [J]. Exp Cell Res, 2004, 301(2): 119-127.
[36] Lee SY, Lee KS, Yi SH, et al. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production [J]. PLoS One, 2013, 8(12): e80873.
[37] Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases [J]. J Bone Miner Metab, 2015, 33(4): 359-370.
[38] Decuypere JP, Monaco G, Missiaen L, et al. IP(3)receptors, mitochondria, and Ca signaling: implications for aging [J]. J Aging Res, 2011, 2011: 920178. doi: 10.4061/2011/920178.
[39] Kim MS, Yang YM, Son A, et al. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+oscillations essential for osteoclastogenesis [J]. J Biol Chem, 2010, 285(10): 6913-6921.
[40] Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis [J]. Bone, 2019, 121: 284-292. doi: 10.1016/j.bone.2019.01.018.
[41] Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress [J]. Cell, 2007, 128(2): 325-339.
[42] de Keizer PL, Burgering BM, Dansen TB. Forkhead box o as a sensor, mediator, and regulator of redox signaling [J]. Antioxid Redox Signal, 2011, 14(6): 1093-1106.
[43] Zainabadi K, Liu CJ, Caldwell ALM, et al. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis [J]. PLoS One, 2017,12(9): e0185236.
[44] Edwards JR, Perrien DS, Fleming N, et al. Silent information regulator(Sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling [J]. J Bone Miner Res, 2013, 28(4): 960-969.
[45] Bartell SM, Kim HN, Ambrogini E, et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation [J]. Nat Commun, 2014, 5: 3773. doi: 10.1038/ncomms4773.
[46] Thummuri D, Naidu VGM, Chaudhari P. Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling [J]. J Mol Med(Berl), 2017, 95(10): 1065-1076.
[47] Kanzaki H, Shinohara F, Itohiya K, et al. RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice [J]. Faseb J, 2017, 31(2): 781-792.
[48] Chen Y, Sun J, Dou C, et al. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1 [J]. Int J Mol Sci, 2016, 17(9): 1516.
[49] Gao Y, Ge W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis [J]. Cell Death Dis, 2018, 9(2): 33.
[50] Kim BJ, Ahn SH, Bae SJ, et al. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study [J]. J Bone Miner Res, 2012, 27(11): 2279-2290.
[51] Chen B, Yan YL, Liu C, et al. Therapeutic effect of deferoxamine on iron overload-induced inhibition of osteogenesis in a zebrafish model [J]. Calcif Tissue Int, 2014, 94(3): 353-360.
[52] Chen D, Ye Z, Wang C, et al. Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation [J]. Pharmacol Res, 2020, 159: 104944. doi: 10.1016/j.phrs.2020.104944.
[53] Sun X, Xie Z, Hu B, et al. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling [J]. Redox Biol, 2020, 28: 101309. doi: 10.1016/j.redox.2019.101309.
[54] Chen K, Qiu P, Yuan Y, et al. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species [J]. Theranostics, 2019, 9(6): 1634-1650.
[55] Li DZ, Zhang QX, Dong XX, et al. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells [J]. J Bone Miner Metab, 2014, 32(5): 494-504.
[56] Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis [J]. Free Radic Biol Med, 2010, 48(6): 749-762.
[57] Romagnoli C, Marcucci G, Favilli F, et al. Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like SaOS-2 cells [J]. Febs J, 2013, 280(3): 867-879.
[58] Lean JM, Jagger CJ, Kirstein B, et al. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation [J]. Endocrinology, 2005, 146(2): 728-735.
[59] Mainini G, Rotondi M, Di Nola K, et al. Oral supplementation with antioxidant agents containing alpha lipoic acid: effects on postmenopausal bone mass [J]. Clin Exp Obstet Gynecol, 2012, 39(4): 489-493.
[60] Sanders KM, Kotowicz MA, Nicholson GC. Potential role of the antioxidant N-acetylcysteine in slowing bone resorption in early post-menopausal women: a pilot study [J]. Transl Res, 2007, 150(4): 215.
[61] Polat B, Halici Z, Cadirci E, et al. The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone [J]. Eur J Pharmacol, 2013, 718(1-3): 469-474.
[62] Ostman B, Michaëlsson K, Helmersson J, et al. Oxidative stress and bone mineral density in elderly men: antioxidant activity of alpha-tocopherol [J]. Free Radic Biol Med, 2009, 47(5): 668-673.
[63] Shuid AN, Mohamad S, Muhammad N, et al. Effects of α-tocopherol on the early phase of osteoporotic fracture healing [J]. J Orthop Res, 2011, 29(11): 1732-1738.
[64] Koh JM, Lee YS, Byun CH, et al. Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells [J]. J Endocrinol, 2005, 185(3): 401-413.
[65] Feng H, Li Z, Du J, et al. Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway [J]. Cell Death Discov, 2018, 4: 47. doi: 10.1038/s41420-018-0050-9.
[66] Du J, Feng W, Sun J, et al. Ovariectomy upregulated the expression of Peroxiredoxin 1 & 5 in osteoblasts of mice [J]. Sci Rep, 2016, 6: 35995. doi: 10.1038/srep35995.
[67] Xu GP, Li X, Zhu ZY, et al. Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in Mc3t3-E1 cells [J]. Biol Trace Elem Res, 2021: 1-12. doi: 10.1007/s12011-020-02508-x.
[68] Soares MPR, Silva DP, Uehara IA, et al. The use of apocynin inhibits osteoclastogenesis [J]. Cell Biol Int, 2019, 43(5): 466-475.
[69] Byun CH, Koh JM, Kim DK, et al. Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bone marrow stromal cells [J]. J Bone Miner Res, 2005, 20(7): 1125-1135.
[70] Jiang Y, Luo W, Wang B, et al. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice [J]. Life Sci, 2020, 246: 117422. doi: 10.1016/j.lfs.2020.117422.
[71] Kim EN, Kim GR, Yu JS, et al. Inhibitory Effect of(2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside on RANKL-Induced Osteoclast Differentiation and ROS Generation in Macrophages [J]. Int J Mol Sci, 2020, 22(1): 222.
[72] Ferlazzo N, Andolina G, Cannata A, et al. Is Melatonin the Cornucopia of the 21st Century? [J]. Antioxidants(Basel), 2020, 9(11): 1088.
[73] Li X, Chen Y, Mao Y, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway [J]. Front Bioeng Biotechnol, 2020, 8: 625. doi: 10.3389/fbioe.2020.00625.
[74] Pinna A, Torki Baghbaderani M, Vigil Hernández V, et al. Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment [J]. Acta Biomater, 2021, 122: 365-376. doi: 10.1016/j.actbio.2020.12.029.
[75] Huang HT, Cheng TL, Lin SY, et al. Osteoprotective Roles of Green Tea Catechins [J]. Antioxidants(Basel), 2020, 9(11): 1136.
[76] Devareddy L, Hooshmand S, Collins JK, et al. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis [J]. J Nutr Biochem, 2008, 19(10): 694-699.
[77] Zhang J, Lazarenko OP, Blackburn ML, et al. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells [J]. Age(Dordr), 2013, 35(3): 807-820.
[78] Jin H, Du J, Ren H, et al. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells(BMSCs)[J]. FEBS Open Bio, 2021, 11(4): 1223-1236.
[79] Chen L, Hu SL, Xie J, et al. Proanthocyanidins-mediated nrf2 activation ameliorates glucocorticoid-induced oxidative stress and mitochondrial dysfunction in osteoblasts [J]. Oxid Med Cell Longev, 2020, 2020: 9102012. doi: 10.1155/2020/9102012.
[80] Li M, Hao L, Li L, et al. Cinnamtannin B-1 prevents ovariectomy-induced osteoporosis via attenuating osteoclastogenesis and ROS generation [J]. Front Pharmacol, 2020, 11: 1023. doi: 10.3389/fphar.2020.01023.
[81] Rhee SG, Kang SW, Chang TS, et al. Peroxiredoxin, a novel family of peroxidases [J]. IUBMB Life, 2001, 52(1/2): 35-41.
[82] Rhee SG, Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones [J]. Antioxid Redox Signal, 2011, 15(3): 781-794.
[83] Hall A, Nelson K, Poole LB, et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins [J]. Antioxid Redox Signal, 2011, 15(3): 795-815.
[84] Yang KS, Kang SW, Woo HA, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid [J]. J Biol Chem, 2002, 277(41): 38029-38036.
[85] Park MH, Jo M, Kim YR, et al. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases [J]. Pharmacol Ther, 2016, 163: 1-23. doi: 10.1016/j.pharmthera.2016.03.018.
[86] Jeong SJ, Kim S, Park JG, et al. Prdx1(peroxiredoxin 1)deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux [J]. Autophagy, 2018, 14(1): 120-133.
[87] Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis [J]. Free Radic Biol Med, 2019, 132: 73-82. doi: 10.1016/j.freeradbiomed.2018.08.038.
[88] Román F, Urra C, Porras O, et al. Real-time H2O2 measurements in bone marrow mesenchymal stem cells(MSCs)show increased antioxidant capacity in cells from osteoporotic women [J]. J Cell Biochem, 2017, 118(3): 585-593.
[89] Park KR, Yun HM, Yeo IJ, et al. Peroxiredoxin 6 inhibits osteogenic differentiation and bone formation through human dental pulp stem cells and induces delayed bone development [J]. Antioxid Redox Signal, 2019, 30(17): 1969-1982.
[90] Du J, Feng W, Sun J, et al. Ovariectomy upregulated the expression of Peroxiredoxin 1 & 5 in osteoblasts of mice [J]. Sci Rep, 2016, 6: 35995. doi: 10.1038/srep35995.
[91] Feng H, Li Z, Du J, et al. Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway [J]. Cell Death Discov, 2018, 4: 47. doi: 10.1038/s41420-018-0050-9.
[1] 陈诗鸿,姜冬青,庄向华,李晓博,潘喆,孙爱丽,娄能俊,王殿辉,杜娇娇,宋玉文. 以骨痛为首发表现的原发性胆汁性胆管炎1例[J]. 山东大学学报 (医学版), 2022, 60(8): 98-102.
[2] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[3] 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25.
[4] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[5] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[6] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[7] 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25.
[8] 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102.
[9] 程晓光,卢艳慧. 男性骨质疏松:一个长期被忽视的问题[J]. 山东大学学报 (医学版), 2021, 59(6): 5-9.
[10] 罗湘杭,周若玙. 骨质疏松的病因及发病机制研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 10-14.
[11] 陈诗鸿. 糖皮质激素性骨质疏松症研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 33-37.
[12] 邢小平. 原发性骨质疏松症诊治思考[J]. 山东大学学报 (医学版), 2021, 59(6): 1-4.
[13] 杜娇娇,庄向华,陈诗鸿,王雪萌,姜冬青,吴菲,韩晓琳,华梦羽,宋玉文. 绝经后骨质疏松症患者血清IL-31、IL-33表达变化[J]. 山东大学学报 (医学版), 2021, 59(6): 45-50.
[14] 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34.
[15] 向琳,陈腊梅,王婧雯,李海铭,李浩宇,王菊,范玉琛,王凯. 30名健康志愿者饮用饮久舒对肝代谢酶的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[2] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[3] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[4] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[5] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .
[6] . Graves病131治疗后1年内早发甲减影响因素分析[J]. 山东大学学报(医学版), 2009, 47(9): 5 -6 .
[7] 牛瑞,刘波,邵明举,王伟 . 非小细胞肺癌区域淋巴结中肺组织特异性基因的表达与预后的关系[J]. 山东大学学报(医学版), 2007, 45(9): 884 -885 .
[8] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .
[9] 滕学仁,赵永生,胡光亮,周伦,李建民 . 两种方法保存同种异体髌腱移植重建膝关节交叉韧带的光镜电镜观察[J]. 山东大学学报(医学版), 2008, 46(10): 945 -950 .
[10] 焦芳芳,刘世青,李飞,李长生,王琴,孙青,鹿伟 . 化瘀理肺方对大鼠肺间质纤维化时Smad7和TGF-β表达的影响[J]. 山东大学学报(医学版), 2007, 45(10): 1054 -1058 .