您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 69-78.doi: 10.6040/j.issn.1671-7554.0.2023.0150

• 临床医学 • 上一篇    下一篇

肾透明细胞癌中预后相关RNA编辑位点的筛选

宋兆录1,董正璇2,彭传真1,黄彩娜2,胡克清1,黄永胜3,阎磊3   

  1. 1.青岛市胶州中心医院泌尿外科, 山东 青岛 266300;2.青岛市市立医院急诊科, 山东 青岛 266000;3.山东大学齐鲁医院泌尿外科, 山东 济南 250012
  • 收稿日期:2023-02-17 发布日期:2023-10-10
  • 通讯作者: 阎磊. E-mail:yanlei5309@126.com黄彩娜. E-mail:773245280@qq.com
  • 基金资助:
    山东省重点研发计划(2019GSF108255)

Screening of prognosis-related RNA editing sites in clear cell renal cell carcinoma

SONG Zhaolu1, DONG Zhengxuan2, PENG Chuanzhen1, HUANG Caina2, HU Keqing1, HUANG Yongsheng3, YAN Lei3   

  1. 1. Department of Urology, Jiaozhou Central Hospital, Qingdao 266300, Shandong, China;
    2. Department of Emergency, Qingdao Municipal Hospital, Qingdao 266000, Shandong, China;
    3. Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2023-02-17 Published:2023-10-10

摘要: 目的 探讨肾透明细胞癌(ccRCC)中与患者生存预后相关的RNA编辑位点。 方法 下载癌症基因组图谱(TCGA)中RNA编辑位点的表达数据,使用最小绝对收缩和选择算子(LASSO)及Cox回归筛选出与ccRCC预后密切关联的RNA编辑位点。根据多因素Cox结果计算患者的风险评分后构建预后模型和列线图,进一步采用接受者操作特征(ROC)曲线评估预后模型和列线图的准确性,并进行相关的功能学分析。 结果 共筛选出25个与ccRCC预后相关的RNA编辑位点。根据风险评分的中位值将患者分为高风险组(n=222)与低风险组(n=226)。Kaplan-Meier生存分析结果显示,高风险组患者的总生存时间与疾病无进展生存时间均低于低风险组(P<0.001)。预后模型和列线图预测患者1、3、5年生存的曲线下面积(AUC)值分别为0.801、0.824和0.806、0.858,0.833和0.821。风险分组之间具备不同的生物学功能及药物敏感性。 结论 通过公共数据库筛选出的25个RNA编辑位点有望会成为ccRCC患者新的预后标记物。

关键词: 肾透明细胞癌, RNA编辑, 预后模型, 免疫治疗

Abstract: Objective To explore RNA editing sites associated with survival and prognosis in clear cell renal cell carcinoma(ccRCC). Methods After the expression data of RNA editing sites in the Cancer Genome Atlas(TCGA)were downloaded, the minimum absolute contraction, selection operator(LASSO)and Cox regression were used to identify RNA editing sites closely associated with ccRCC prognosis. A prognostic model and nomogram were constructed after the risk scores were calculated based on the multivariate Cox results. The accuracy of the prognostic model and nomogram was evaluated with the receiver operating characteristic(ROC)curve, and the relevant functional analysis was performed. Results A total of 25 RNA editing sites associated with ccRCC prognosis were screened. Patients were divided into the high-risk group(n=222)and low-risk group(n=226)based on the median risk score. Kaplan-Meier survival analysis showed that the overall survival(OS)and progression-free survival(PFS)were in shorter in the high-risk group than in the low-risk group(P<0.001). The area under the ROC curve(AUC)of 1-year, 3-year and 5-year survival predicted by the prognosis model were 0.801, 0.824 and 0.806, and those predicted by the nomogram were 0.858, 0.833 and 0.821, respectively. There were differences in biological function and drug sensitivity between the two groups. Conclusion The 25 RNA editing sites are expected to become new prognostic markers and drug therapeutic targets for patients with ccRCC.

Key words: Renal clear cell carcinoma, RNA editing, Prognostic model, Immunotherapy

中图分类号: 

  • R692
[1] Linehan WM, Schmidt LS, Crooks DR, et al. The metabolic basis of kidney Cancer [J]. Cancer Discov, 2019, 9(8): 1006-1021.
[2] 中国医疗保健国际交流促进会泌尿健康促进分会. 肾癌基因检测中国专家共识(2021版)[J]. 现代泌尿外科杂志, 2022, 27(3): 192-200. China Association for the Promotion of International Exchange of Medical Care Urinary Health Promotion Branch. Chinese expert consensus on kidney cancer gene testing(2021 version)[J]. Journal of Modern Urology, 2022, 27(3): 192-200.
[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[4] Go H, Kang MJ, Kim PJ, et al. Development of response classifier for vascular endothelial growth factor receptor(VEGFR)-tyrosine kinase inhibitor(TKI)in metastatic renal cell carcinoma [J]. Pathol Oncol Res, 2019, 25(1): 51-58.
[5] Liu J, Wang F, Zhang Y, et al. ADAR1-Mediated RNA editing and its role in cancer [J]. Front Cell Dev Biol, 2022, 10: 956649. doi: 10.3389/fcell.2022.956649.
[6] Kurkowiak M, Arcimowicz L, Chrusciel E, et al. The effects of RNA editing in cancer tissue at different stages in carcinogenesis [J]. RNA Biol, 2021, 18(11): 1524-1539.
[7] Park E, Jiang Y, Hao L, et al. Genetic variation and microRNA targeting of A-to-I RNA editing fine tune human tissue transcriptomes [J]. Genome Biol, 2021, 22(1): 77. doi: 10.1186/s13059-021-02287-1.
[8] Peng X, Xu X, Wang Y, et al. A-to-I RNA editing contributes to proteomic diversity in cancer [J]. Cancer Cell, 2018, 33(5): 817-828.
[9] Chigaev M, Yu H, Samuels DC, et al. Genomic positional dissection of RNA editomes in tumor and normal samples [J]. Front Genet, 2019, 10: 211. doi: 10.3389/fgene.2019.00211. eCollection 2019.
[10] Sun Z, Qin X, Fang J, et al. Multi-omics analysis of the expression and prognosis for FKBP gene family in renal cancer [J]. Front Oncol, 2021, 11: 697534. doi: 10.3389/fonc.2021.697534. eCollection 2021.
[11] Teng PC, Liang Y, Yarmishyn AA, et al. RNA Modifications and epigenetics in modulation of lung cancer and pulmonary diseases [J]. Int J Mol Sci, 2021, 22(19):10592. doi: 10.3390/ijms221910592.
[12] Song B, Shiromoto Y, Minakuchi M, et al. The role of RNA editing enzyme ADAR1 in human disease [J]. Wiley Interdiscip Rev RNA, 2022, 13(1): e1665. doi: 10.1002/wrna.1665.
[13] Jiang L, Hao Y, Shao C, et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance [J]. Clin Invest, 2022, 132(6): e143397. doi: 10.1172/JCI143397.
[14] Nakamura K, Shigeyasu K, Okamoto K, et al. ADAR1 and AZIN1 RNA editing function as an oncogene and contributes to immortalization in endometrial cancer [J]. Gynecologic Oncology, 2022, 166(2): 326-333.
[15] Shen P, Yang T, Chen Q, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing [J]. Mol Cancer, 2021, 20(1): 51. doi: 10.1186/s12943-021-01333-7.
[16] Martinez HD, Jasavala RJ, Hinkson I, et al. RNA editing of androgen receptor gene transcripts in prostate cancer cells [J]. J Biol Chem, 2008, 283(44): 29938-29949.
[17] Shigeyasu K, Okugawa Y, Toden S, et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer [J]. JCI Insight, 2018, 3(12): e99976. doi: 10.1172/jci.insight.99976.
[18] Okugawa Y, Toiyama Y, Shigeyasu K, et al. Enhanced AZIN1 RNA editing and overexpression of its regulatory enzyme ADAR1 are important prognostic biomarkers in gastric cancer [J]. Transl Med, 2018, 16(1): 366. doi: 10.1186/s12967-018-1740-z.
[19] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy [J]. Cell, 2017, 168(4): 707-723.
[20] 胡立勇,钟浩,房娟娟,等. 基于数据库分析CCR基因对肾透明细胞癌预后的预测价值[J]. 山东大学学报(医学版), 2023, 61(4): 49-55. HU Liyong, ZHONG Hao, FANG Juanjuan, et al. Prognostic value of CCR gene in clear cell renal cell carcinoma based on database [J]. Journal of Shandong University(Health Sciences), 2023, 61(4): 49-55.
[21] Tang SJ, Shen H, An O, et al. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development [J]. Nat Commun, 2020, 11(1): 799.
[22] 杨朝华, 田宇, 安治国. RNA编辑与肿瘤[J]. 中国实验诊断学, 2004, 8(1): 89-91. YANG Zhaohua, TIAN Yu, AN Zhiguo. RNA editing and tumor [J]. Chinese Journal of Laboratory Diagnosis, 2004, 8(1): 89-91.
[23] Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation [J]. Genes Dev, 2015, 29(13): 1343-1355.
[24] Chen L, Li Y, Lin CH, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma [J]. Nat Med, 2013, 19(2): 209-216.
[25] Xu LD, Öhman M. ADAR1 Editing and its role in cancer [J]. Genes(Basel), 2018, 10(1):12. doi: 10.3390/genes10010012.
[26] Wu YM, Guo Y, Yu H, et al. RNA editing affects cis-regulatory elements and predicts adverse cancer survival [J]. Cancer Med, 2021, 10(17): 6114-6127.
[1] 胡立勇,钟浩,房娟娟,国巍,张雨露,范医东. 基于数据库分析CCR基因对肾透明细胞癌预后的预测价值[J]. 山东大学学报 (医学版), 2023, 61(4): 49-55.
[2] 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16.
[3] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[4] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[5] 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27.
[6] 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8.
[7] 邓晓惠,郭玲. 免疫治疗在胚胎反复种植失败中的应用进展[J]. 山东大学学报 (医学版), 2021, 59(8): 32-37.
[8] 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33.
[9] 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28.
[10] 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51.
[11] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73.
[12] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89-95.
[13] 吴德沛,陈晓晨. 淋巴瘤免疫治疗的现状及展望[J]. 山东大学学报 (医学版), 2019, 57(7): 13-20.
[14] 黄晓军. 细胞免疫治疗在血液系统恶性肿瘤的应用进展[J]. 山东大学学报 (医学版), 2019, 57(7): 1-5.
[15] 王昭. 噬血细胞性淋巴组织细胞增多症治疗的临床研究新进展[J]. 山东大学学报 (医学版), 2019, 57(7): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .