您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (1): 10-16.doi: 10.6040/j.issn.1671-7554.0.2022.0885

• 基础医学 • 上一篇    

黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制

赵凯1,尹心宝2,张宗亮2,王振林2,朱冠群2,王科2   

  1. 1.辽宁中医药大学, 辽宁 沈阳 116600;2.青岛大学附属医院泌尿外科, 山东 青岛 266003
  • 发布日期:2023-01-10
  • 通讯作者: 王科. E-mail:wangke6910@sina.com
  • 基金资助:
    国家自然科学基金(31971191)

Inhibitory effect and mechanism of astragaloside Ⅱ on renal clear cell carcinoma cells

ZHAO Kai1, YIN Xinbao2, ZHANG Zongliang2, WANG Zhenlin2, ZHU Guanqun2, WANG Ke2   

  1. 1. Liaoning University of Traditional Chinese Medicine, Shenyang 116600, Liaoning, China;
    2. Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
  • Published:2023-01-10

摘要: 目的 探讨黄芪皂苷Ⅱ(As Ⅱ)对肾透明细胞癌786-O细胞增殖的影响及潜在机制。 方法 噻唑兰(MTT)法和克隆实验检测As Ⅱ对786-O细胞的生长和集落形成的抑制作用。细胞流式术检测AS Ⅱ的凋亡诱导作用。随后,用免疫印迹法检测不同处理组细胞PI3K-AKT-mTOR通路蛋白及凋亡执行蛋白的变化,最后利用PI3K-AKT-mTOR通路激活剂IGF-1与As Ⅱ对细胞共处理后,流式细胞术检测细胞凋亡水平的变化,进一步验证PI3K-AKT-mTOR通路在凋亡诱导中的作用。 结果 As Ⅱ对786-O细胞的增殖抑制效应具有浓度和时间依赖性,时间与浓度之间有交互作用(F时间=513.00, P<0.001;F浓度=1 678.00, P<0.001;F时间×浓度=18.23, P<0.001),并可抑制细胞集落形成。As Ⅱ可诱导细胞凋亡并诱导凋亡执行蛋白cleved caspase-3的表达(P0 μmol/L As Ⅱ组 vs 10 μmol/L As Ⅱ组= 0.013 9,P0 μmol/L As Ⅱ组 vs 20 μmol/L As Ⅱ组<0.001)。As Ⅱ可抑制PI3K、AKT、mTOR蛋白的磷酸化(p-PI3K: P0 μmol/L As Ⅱ组 vs 20 μmol/L As Ⅱ组=0.032 4;p-mTOR: P0 μmol/L As Ⅱ组 vs 10 μmol/L As Ⅱ组=0.004 1,P0 μmol/L As Ⅱ组 vs 20 μmol/L As Ⅱ组<0.001;p-AKT:P0 μmol/L As Ⅱ组 vs 10 μmol/L As Ⅱ组=0.003 2,P0 μmol/L As Ⅱ组 vs 20 μmol/L As Ⅱ组=0.001 2)。IGF-1可以逆转As Ⅱ对AKT的磷酸化(P=0.006 8),并减弱AsⅡ对786-O细胞的凋亡诱导效应。 结论 As Ⅱ可抑制肾癌780-O细胞的增殖和集落形成,并通过抑制PI3K-AKT-mTOR信号通路的磷酸化,上调cleved caspase-3的表达,进而诱导细胞凋亡。

关键词: 肾透明细胞癌, 黄芪皂苷Ⅱ, 肿瘤治疗, 凋亡

Abstract: Objective To investigate the effect of astragaloside Ⅱ(As Ⅱ)on the proliferation of renal clear cell carcinoma 786-O cells and its potential mechanism. Methods The inhibitory effect of As Ⅱ on the growth and colony formation of 786-O cells was detected by MTT assay and cloning assay. Cell flow cytometry was used to detect the apoptosis-inducing effect of AS Ⅱ. Subsequently, Western blotting was used to detect the changes of PI3K-AKT-mTOR pathway protein and apoptosis executioner protein in cells treated with different concentrations of As Ⅱ. After co-treatment of cells with PI3K-AKT-mTOR pathway activator IGF-1 and As Ⅱ, flow cytometry was used to detect the changes of apoptosis and further verify the role of PI3K-AKT-mTOR pathway in apoptosis induction. Results As Ⅱ inhibited the proliferation of 786-O cells in a concentration- and time-dependent manner, with an interaction between time and concentration(Ftime=513.00, P<0.001; Fconcentration=1 678.00, P<0.001; Ftime×concentration=18.23, P<0.001), and inhibited cell colony formation. As Ⅱ induced apoptosis and increased the expression of cleved caspase-3, an apoptotic executioner protein(P0 μmol/L As Ⅱ group vs 10 μmol/L As Ⅱ group=0.013 9,P0 μmol/L As Ⅱ group vs 20 μmol/L As Ⅱ group<0.001). As Ⅱ inhibited the phosphorylation of PI3K, AKT and mTOR proteins(p-PI3K: P0 μmol/L As Ⅱ group vs 20 μmol/L As Ⅱ group=0.032 4;p-mTOR: P0 μmol/L As Ⅱ group vs 10 μmol/L As Ⅱ group=0.004 1,P0 μmol/L As Ⅱ group vs 20 μmol/L As Ⅱ group<0.001;p-AKT:P0 μmol/L As Ⅱ group vs 10 μmol/L As Ⅱ group=0.003 2,P0 μmol/L As Ⅱ group vs 20 μmol/L As Ⅱ group=0.001 2). IGF-1 reversed the phosphorylation of AKT by As Ⅱ(P=0.006 8), and attenuated the apoptosis-inducing effect of As Ⅱ on 786-O cells. Conclusion As Ⅱ can inhibit the proliferation and colony formation of renal carcinoma 780-O cells, and up-regulate the expression of cleved caspase-3 by inhibiting the phosphorylation of PI3K-AKT-mTOR signaling pathway, which in turn induces apoptosis.

Key words: Clear cell renal carcinoma, Astragaloside Ⅱ, Cancer therapy, Apoptosis

中图分类号: 

  • R737.11
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[2] Rysz J, Franczyk B, Ławiński J, et al. Characteristics of clear cell papillary renal cell carcinoma(ccpRCC)[J]. Int J Mol Sci, 2021, 23(1): 151.
[3] Canil C, Hotte S, Mayhew LA, et al. Interferon-alfa in the treatment of patients with inoperable locally advanced or metastatic renal cell carcinoma: a systematic review [J]. Can Urol Assoc J, 2010, 4(3): 201-208.
[4] Nielsen OH, Grimm D, Wehland M, et al. Anti-angiogenicdrugs in the treatment of metastatic renal cell carcinoma: advances in clinical application[J]. Curr Vasc Pharmacol, 2015, 13(3): 381-391.
[5] Stone L. Kidney cancer: no advantage of adjuvant sunitinib or sorafenib [J]. Nat Rev Urol, 2016, 13(5): 240-241.
[6] 周岱翰. 中医肿瘤学发展历程的反思与展望[J]. 中医肿瘤学杂志, 2019, 1(1): 1-5, 9. ZHOU Daihan. Reflection and prospect of traditional Chinese medicine oncology evelopment [J]. Journal of Oncology in Chinese Medicine, 2019, 1(1): 1-5, 9.
[7] 张隽开,王忠裕,丁大朋,等. 黄芪对肝癌耐药细胞株Bel/Fu化疗敏感性的影响[J]. 中国中西医结合外科杂志, 2008, 14(4): 398-402. ZHANG Junkai, WANG Zhongyu, DING Dapeng, et al. Effect of astragulus injection on chemosensitivity of drug-resistant hepatic carcinoma Bel/Fu cell line [J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine, 2008, 14(4): 398-402.
[8] 王培培. 黄芪皂苷Ⅱ和Ⅳ对人肝癌细胞BEL-7402/5-FU的耐药逆转作用及其机制研究[D]. 合肥:安徽医科大学, 2010.
[9] 谢荣丹,龙凤. 黄芪及黄芪有效成分抗乳腺癌作用的研究[J]. 世界最新医学信息文摘, 2018, 18(92): 67-68. XIE Rongdan, LONG Feng. The study on the effect of astragalus and its active components against breast cancer [J]. World Latest Medicine Information(Electronic Version), 2018, 18(92): 67-68.
[10] 熊斌, 鲁伟. 转移性肾癌治疗的现状和进展[J]. 中华泌尿外科杂志, 2021, 42(4): 308-311.
[11] 徐可, 周启东. 晚期肾癌治疗与基础研究进展[J]. 上海医学, 2019, 42(3): 143-146.
[12] 王媛, 吴英, 董丽,等. 转移性肾癌的治疗新进展[J]. 临床误诊误治, 2018, 31(2): 114-116.
[13] Wang YP, Li XY, Song CQ, et al. Effect of astragaloside IV on T, B lymphpcyte proliferation and peritoneal macrophage function in mice[J]. Acta Pharmacol Sin, 2002, 23(3): 263-266.
[14] Qi Y, Gao F, Hou L, et al. Anti-inflammatory and immunostimulatory activities of astragalosides[J]. Am J Chin Med, 2017, 45(6): 1157-1167.
[15] 高崇婷, 桂定坤, 汪年松,等. 黄芪皂苷Ⅱ对STZ诱导的糖尿病大鼠的肾脏保护作用研究[J]. 现代生物医学进展, 2020, 20(23): 4401-4406, 4417. GAO Chongting, GUI Dingkun, WANG Niansong, et al. Renal protective effect of astragaloside-Ⅱ on STZ-induced diabetic rats [J]. Progress in Modern Biomedicine, 2020, 20(23): 4401-4406, 4417.
[16] 武超,许杜娟,杨翠,等. 黄芪皂苷Ⅱ增加5-氟尿嘧啶对人肝癌细胞株HepG2增殖抑制作用[J]. 安徽医科大学学报, 2016, 51(1): 78-82. WU Chao, XU Dujuan, YANG Cui, et al. Increasing inhibition of human hepatic cancer HepG2 cells to 5-fluorouracil by Astragaloside II [J]. Acta Universitatis Medicinalis Anhui, 2016, 51(1): 78-82.
[17] 王敏, 郑喜, 祁燕,等. 黄芪皂苷II抗肝癌肺转移效应及作用机理的研究[J]. 中药药理与临床, 2019, 35(6): 41-45. WANG Min, ZHENG Xi, QI Yan, et al. Effect and mechanism of astragaloside II on pulmonary metastatic of hepatoma in mice [J]. Pharmacology and Clinics of Chinese Materia Medica, 2019, 35(6): 41-45.
[18] Guo H, German P, Bai SS, et al. The PI3K/AKT pathway and renal cell carcinoma [J]. J Genet Genomics, 2015, 42(7): 343-353.
[19] 马建辉. 肾癌细胞mTOR信号通路异常与依维莫司作用机制[J]. 中华泌尿外科杂志, 2013, 34(3): 229-231.
[20] 宿恒川, 孙福康. PI3K/Akt/mTOR信号通路及mTOR抑制剂在泌尿系统肿瘤中的研究进展[J]. 上海交通大学学报(医学版), 2012, 32(5): 674-678. SU Hengchuan, SUN Fukang. Research progress of PI3K/Akt/mTOR signaling pathway and m TOR inhibitors in urologic malignancies [J]. Journal of Shanghai Jiaotong University(Medical Science), 2012, 32(5): 674-678.
[21] 李文超,陈军宝,卢宏柱. PI3K/Akt/mTOR信号通路在肾细胞癌中的研究进展[J]. 医学综述, 2014, 20(16): 2930-2932. LI Wenchao, CHEN Junbao, LU Hongzhu. The research progress of PI3K/Akt/mTOR signaling pathway in renal cell carcinoma [J]. Medical Recapotulate, 2014, 20(16): 2930-2932.
[22] 王娟. 冬青素A经PI3K/AKT/mTOR通路抑制血管新生抗肝癌增殖[D]. 扬州:扬州大学, 2016.
[23] 史颖弘,樊嘉,周俭,等. PI3K/AKT/mTOR信号通路在肝癌细胞自体吞噬中的作用研究[J]. 中华消化外科杂志, 2007, 6(1): 39-43.
[24] Guo C, Gasparian AV, Zhuang Z, et al. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappa B and p53 pathways[J]. Oncogene, 2009, 28(8): 1151-1161.
[25] Fuereder T, Jaeger-Lansky A, Hoeflmayer D, et al. mTOR inhibition by everolimus counteracts VEGF induction by sunitinib and improves anti-tumor activity against gastric cancer in vivo[J]. Cancer Lett, 2010, 296(2): 249-256.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[3] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[4] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[5] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[6] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[7] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[8] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[9] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[10] 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34.
[11] 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33.
[12] 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47.
[13] 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51.
[14] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89-95.
[15] 王冰玉,杨阳,晁岚. TOLL样受体4在15例子宫腺肌病中的表达及作用[J]. 山东大学学报 (医学版), 2020, 58(6): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!