山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (7): 89-95.doi: 10.6040/j.issn.1671-7554.0.2020.0089
• • 上一篇
罗昕1*,何兵1*,聂清生2,侯震波3,董军1,李玉花1,曾祥芹1,刘伟1,孔德民1,曹金凤1
LUO Xin1*, HE Bing1*, NIE Qingsheng2, HOU Zhenbo3, DONG Jun1, LI Yuhua1, ZENG Xiangqin1, LIU Wei1, KONG Demin1, CAO Jinfeng1
摘要: 目的 探讨磁共振扩散加权成像(DWI)单指数模型和扩散峰度成像(DKI)模型在预测肾透明细胞癌(ccRCC)病理分级中的价值差异。 方法 前瞻性纳入经病理结果证实的ccRCC患者61例,根据Fuhrman分级将其分为低级别组27例(Ⅰ级10例、Ⅱ级17例)和高级别组34例(Ⅲ级19例、Ⅳ级15例)。患者均行肾脏常规单指数DWI序列和DKI序列扫描,测量参数包括ADC值、各向异性分数(FA)、平均扩散系数(MD)、平均扩散峰度(MK)、轴向扩散峰度(Ka)以及径向扩散峰度(Kr)值。多组间比较采用单因素方差分析(ANOVA),利用独立样本t检验进行两组间均数的比较,使用受试者工作特征(ROC)曲线得出DWI、DKI各参数的曲线下面积(AUC)、敏感度、特异度,并用Delong检验比较各参数的AUC值,以评价各参数对分级的诊断效能。 结果 (1)ADC、MD、MK、Ka、Kr值在正常肾实质、低级别及高级别ccRCC间的差异有统计学意义(P<0.05),FA值在3组间的差异无统计学意义(P>0.05)。正常肾实质、低级别及高级别ccRCC的ADC值分别为(2.10±0.16)×10-3mm2/s、(1.70±0.34)×10-3mm2/s、(1.20±0.32)×10-3mm2/s,FA值分别为0.26±0.06、0.26±0.11、0.28±0.14,MD值分别为(6.02±0.43)×10-3mm2/s、(5.10±0.96)×10-3mm2/s、(3.70±0.76)×10-3mm2/s,MK值分别为0.49±0.04、0.57±0.07、0.84±0.20,Ka值分别为0.39±0.04、0.48±0.14、0.65±0.19,Kr值分别为0.53±0.05、0.66±0.18、0.98±0.29。与正常肾实质比较,低级别与高级别ccRCC患者的ADC、MD值均逐渐减低,MK、Ka及Kr值均逐渐升高,差异有统计学意义(P<0.05),FA值差异无统计学意义(P>0.05)。(2)绘制ROC曲线,得出ADC、MD、MK、Ka及Kr值鉴别低级别、高级别ccRCC的截断值分别为1.50×10-3mm2/s、4.49×10-3mm2/s、0.71、0.51、0.68,敏感度分别为85.3%、87.5%、79.2%、83.3%、95.8%,特异度分别为75.2%、90.6%、100.0%、85.3%、75.4%;各参数鉴别低级别、高级别ccRCC的AUC分别为ADC值0.831,MD值0.884,MK值0.950,Ka值0.832,Kr值0.874,其中以MK值的AUC最高。 结论 与单指数扩散模型相比,DKI模型,特别是其衍生出的参数MK,更适合作为ccRCC病理分级预测的成像技术。
中图分类号:
[1] Tilki D, Nguyen HG, DallEra MA, et al. Impact of histologic subtype on cancer-specific survival in patients with renal cell carcinoma and tumor thrombus[J]. Eur Urol, 2014, 66(3): 577-583. [2] Ghavamian R, Cheville JC, Lohse CM, et al. Renal cell carcinoma in the solitary kidney: an analysis of complications and outcome after nephron sparing surgery[J]. J Urol, 2002, 168(2): 454-459. [3] Doehn C, Siebels M, Steiner T. Follow-up of renal cell carcinoma based on stage and initial treatment[J]. Urologe A, 2020, 59(2): 162-168. [4] Seveenco S, Heinz-Peer G, Ponhold L, et al. Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors[J]. Eur J Radiol, 2014, 83(6): 909-913. [5] Yu X, Lin M, Ouyang H, et al. Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0 T diffusion-weighted MRI[J]. Eur J Radiol, 2012, 81(11): 3061-3066. [6] Minarikova L, Bogner W, Pinker K, et al. Investigating the prediction value of multiparametric magnetic resonace imaging at 3 T in response to neoadjuvant chemotherapy in breast cancer[J]. Eur Radiol, 2017, 27(5): 190l-1911. [7] Kamagata K, Andica C, Hatano T, et al. Advanced diffusion magnetic resonance imaging in patients with Alzheimers and Parkinsons diseases[J]. Neural Regen Res, 2020, 15(9): 1590-1600. [8] Abdalla G, Sanverdi E, Machado PM, et al. Role of diffusional kurtosis imaging in grading of brain gliomas: a protocol for systematic review and meta-analysis[J]. BMJ Open, 2018, 8(12): e025123. doi: 10.1136/bmjopen-2018-025123. [9] Pentang G, Lanzman RS, Heusch P, et al. Diffusion kurtosis imaging of the human kidney: a feasibility study[J]. Magn Reson Imaging, 2014, 32(5): 413-420. [10] Huang Y, Chen X, Zhang Z, et al. MRI quantification of non-Gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study[J]. NMR Biomed, 2015, 28(2): 154-161. [11] Srigley JR, Delahunt B, Eble JN, et al. The international society of urological pathology(ISUP)vancouver classification of renal neoplasia[J]. Am J Surg Pathol, 2013, 37(10): 1469-1489. [12] Goyal A, Sharma R, Bhalla AS, et al. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype[J]. Acta Radiol, 2012, 53(3): 349-358. [13] 孙军, 邢伟, 陈杰, 等. Tlb期肾透明细胞癌 ADC 值与病理分级相关性的研究[J]. 中华放射学杂志, 2012, 46(8): 682-686. SUN Jun, XING Wei, CHEN Jie, et al. Correlation between apparent diffusion coefficient value and pathological grading in pT1b clear cell renal carcinoma[J]. Chinese Journal of Radiology, 2012, 46(8): 682-686. [14] Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. [15] Yang AW, Jensen JH, Hu CC, et al. Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging[J]. J Magn Imaging, 2013, 37(2): 365-371. [16] Hempel JM, Brendle C, Bender B, et al. Diffusion kurtosis imaging histogram parameter metrics predicting survival in integrated molecular subtypes of diffuse glioma: an observational cohort study[J]. Eur J Radiol, 2019, 112: 144-152. doi: 10.1016/j.ejrad.2019.01.014. [17] Quentin M, Pentang G, Schimmoller, et al. Feasibility of diffusion kurtosis tensor imaging in prostate MRI for the assessment of prostate cancer: preliminary results[J]. Magn Reson Imaging, 2014, 32(7): 880-885. [18] 钟燕, 叶慧义. 磁共振扩散峰度成像在前列腺癌中的研究现状[J]. 中国医学影像学杂志, 2017, 25(3): 235-237. [19] Shan Y, Chen X, Liu K, et al. Prostate cancer aggressive prediction: preponderant diagnostic performances of intravoxel incoherent motion(IVIM)imaging and diffusion kurtosis imaging(DKI)beyond ADC at 3.0 T scanner with gleason score at final pathology[J]. Abdom Radiol(NY), 2019, 44(10): 3441-3452. [20] 刘伟锋, 陈亮, 江新青. 磁共振扩散峰度成像鉴别诊断肾细胞癌亚型的可行性分析[J]. 哈尔滨医科大学学报, 2016, 50(4): 333-336. LIU Weifeng, CHEN Liang, JIANG Xinqing. Feasibility of diffusion kurtosis iamging in differential diagnosis of subtypes of renal cell carcinoma[J]. Journal of Harbin Medical University, 2016, 50(4): 333-336. [21] Wu G, Zhao Z, Yao Q, et al. The study of clear cell renal carcinoma with MR diffusion kurtosis tensor imaging and its histopathologic correlation[J]. Acad Radiol, 2018, 25(4): 430-438. [22] 朱庆强, 朱文荣, 叶靖, 等. 扩散峰度成像评价肾透明细胞癌恶性程度的价值[J]. 中华放射学杂志, 2017, 51(3): 188-191. ZHU Qingqiang, ZHU Wenrong, YE Jing, et al. Value of diffusion kurtosis in assessment of pathological grade of clear cell renal cell carcinoma[J]. Chinese Journal of Radiology, 2017, 51(3): 188-191. [23] Dai Y, Yao Q, Wu G, et al. Characterization of clear cell renal carcinoma with diffusion kurtosis imaging: correlation between diffusion kurtosis parameters and tumor cellularity[J]. NMR Biomed, 2016, 29(7): 873-881. [24] Raab P, Hattingen E, Franz K, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences[J]. Radiology, 2010, 254(3): 876-881. [25] Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading[J]. Radiology, 2012, 263(2): 492-501. |
No related articles found! |
|