山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (11): 19-28.doi: 10.6040/j.issn.1671-7554.0.2021.0603
庞兆飞1,2*,柳勇1*,赵小刚3,闫涛1,陈效伟1,杜贾军1,4
PANG Zhaofei1,2*, LIU Yong1*, ZHAO Xiaogang3, YAN Tao1, CHEN Xiaowei1, DU Jiajun1,4
摘要: 目的 鉴定肺腺癌肿瘤干细胞相关基因亚型,构建肿瘤干性评分模型以预测肺腺癌免疫检查点抑制治疗疗效。 方法 从TCGA数据库下载肺腺癌RNA测序数据,使用“limma”包分析肺腺癌(535例)与癌旁组织(59例)中329个肿瘤干细胞相关基因的差异表达(FDR<0.05, |log2 Fold Change|>2),利用差异基因鉴定肺腺癌肿瘤干细胞相关亚型,通过单因素Cox回归分析进一步筛选出肿瘤干细胞相关亚型之间对预后有意义的共同差异基因。基于主成分分析(PCA)算法,利用123个预后有意义的共同差异基因对TCGA与GEO合并后的630例肺腺癌患者进行肿瘤干性评分,利用Kaplan-Meier 曲线分析确定最佳截断值,将肺腺癌患者分成高、低肿瘤干性评分组(截断值为-1.91)。探究不同肺腺癌肿瘤干细胞相关亚型和肿瘤干性评分组在肿瘤微环境、免疫治疗方面的差异。 结果 鉴定出了36个差异表达基因和3个预后有统计学意义的肿瘤干细胞相关亚型(CSC-A、 CSC-B、 CSC-C)(P=0.033),其在免疫细胞浸润方面差异有统计学意义并与抗原递呈、细胞毒性作用等多条免疫通路相关。单因素Cox回归分析筛选出123个对预后有意义的共同差异基因,构建了肿瘤干性评分模型。低肿瘤干性评分组各类免疫细胞浸润程度普遍上升,PD1、PD-L1、CTLA4表达显著升高。无论是单独的抗CTLA4或抗PD1治疗,亦或是二者联合治疗,低肿瘤干性评分组的疗效都优于高肿瘤干性评分组,无免疫检查点抑制治疗时,高、低肿瘤干性评分组的疗效差异无统计学意义(P=0.060)。在抗PD-L1和抗PD1的两个独立免疫治疗队列中,低肿瘤干性评分组的反应率均高于高肿瘤干性评分组(抗PD-L1治疗队列反应率:50% vs 20%;抗PD1治疗队列反应率:23% vs 0%)。 结论 肿瘤干性评分模型在预测肺腺癌患者免疫检查点抑制治疗疗效方面具有潜在价值,有望为肺腺癌患者免疫检查点抑制治疗提供理论依据。
中图分类号:
[1] Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2):117. [2] Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. [3] Zhao Z, Zheng L, Chen W, et al. Delivery strategies of cancer immunotherapy: recent advances and future perspectives[J]. J Hematol Oncol, 2019, 12(1): 126. [4] Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558. [5] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. [6] Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell(CSC)resistance drivers[J]. Life Sci, 2019, 234: 116781. doi: 10.1016/j.lfs.2019.116781. [7] Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications[J]. Annu Rev Pathol, 2016, 11: 47-76. doi: 10.1146/annurev-pathol-012615-044438. [8] Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, et al. Cancer stem cell metabolism[J]. Breast Cancer Res, 2016, 18(1): 55. [9] Huang T, Song X, Xu D, et al. Stem cell programs in cancer initiation, progression, and therapy resistance[J]. Theranostics, 2020, 10(19): 8721-8743. [10] Quaglino E, Conti L, Cavallo F. Breast cancer stem cell antigens as targets for immunotherapy[J]. Semin Immunol, 2020, 47: 101386. doi: 10.1016/j.smim.2020.101386. [11] Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab[J]. Cell, 2017, 171(4): 934-949.e16. [12] Mariathasan S, Turley SJ, Nickles D, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. [13] Shi J, Hua X, Zhu B, et al. Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study[J]. PLoS Med, 2016, 13(12): e1002162. [14] Spella M, Stathopoulos GT. Immune resistance in lung adenocarcinoma[J]. Cancers(Basel), 2021, 13(3): 384. [15] Gao S, Li N, Gao S, et al. Neoadjuvant PD-1 inhibitor(Sintilimab)in NSCLC[J]. J Thorac Oncol, 2020, 15(5): 816-826. [16] Clara JA, Monge C, Yang Y, et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update[J]. Nat Rev Clin Oncol, 2020, 17(4): 204-232. [17] Najafi M, Farhood B, Mortezaee K. Cancer stem cells(CSCs)in cancer progression and therapy[J]. J Cell Physiol, 2019, 234(6): 8381-8395. [18] Raghavan S, Mehta P, Xie Y, et al. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments[J]. J Immunother Cancer, 2019, 7(1): 190. [19] Miao Y, Yang H, Levorse J, et al. Adaptive immune resistance emerges from tumor-initiating stem cells[J]. Cell, 2019, 177(5): 1172-1186.e14. [20] 王海洋, 董军. 靶向胶质瘤干细胞及其微环境的免疫治疗进展[J]. 中国现代神经疾病杂志, 2020, 20(2): 86-95. WANG Haiyang, DONG Jun. Immunotherapy targeting glioma stem cells and its microenvironment[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2020, 20(2): 86-95. [21] Hinshaw DC, Shevde LA. The Tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566. [22] Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1): 58. [23] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566. [24] 马冉冉, 韩琛, 王朝霞, 等. 人参总皂苷调控NK细胞活性促进5-氟尿嘧啶抗肿瘤的作用[J]. 山东大学学报(医学版), 2018, 56(4): 43-50. MA Ranran, HAN Chen, WANG Zhaoxia, et al. Total saponins of Panax ginseng promoting the anticancer activity of 5-Fluorouracil by mediating NK cell activity[J]. Journal of Shandong University(Health Sciences), 2018, 56(4): 43-50. [25] Kurachi M. CD8 T cell exhaustion[J]. Semin Immunopathol, 2019, 41(3): 327-337. [26] Zhang B, Chikuma S, Hori S, et al. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model[J]. Proc Natl Acad Sci U S A, 2016, 113(30): 8490-8495. [27] Xia B, Herbst RS. Immune checkpoint therapy for non-small-cell lung cancer: an update[J]. Immunotherapy, 2016, 8(3): 279-298. [28] Bassi R, Fornoni A, Doria A, et al. CTLA4-Ig in B7-1-positive diabetic and non-diabetic kidney disease[J]. Diabetologia, 2016, 59(1): 21-29. [29] Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]. Nature reviews Cancer, 2016, 16(5): 275-287. [30] Walk EE, Yohe SL, Beckman A, et al. The cancer immunotherapy biomarker testing landscape[J]. Arch Pathol Lab Med, 2020, 144(6): 706-724. [31] Liu JN, Kong XS, Huang T, et al. Clinical implications of aberrant PD-1 and CTLA4 expression for cancer immunity and prognosis: a pan-cancer study[J]. Front Immunol, 2020, 11: 2048. doi: 10.3389/fimmu.2020.02048. |
[1] | 洪慧,张卫海,李惠娴,李伟伟,张金岭. 异时性阑尾印戒细胞癌合并肺腺癌双原发癌1例[J]. 山东大学学报 (医学版), 2022, 60(8): 130-132. |
[2] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[3] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
[4] | 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27. |
[5] | 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8. |
[6] | 邓晓惠,郭玲. 免疫治疗在胚胎反复种植失败中的应用进展[J]. 山东大学学报 (医学版), 2021, 59(8): 32-37. |
[7] | 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18. |
[8] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73. |
[9] | 杨秀婷,刘启功,左萍,刘正湘,左后娟. CD151-MUT突变对肺腺癌细胞A549迁移的影响及机制[J]. 山东大学学报 (医学版), 2020, 58(3): 81-86. |
[10] | 吴德沛,陈晓晨. 淋巴瘤免疫治疗的现状及展望[J]. 山东大学学报 (医学版), 2019, 57(7): 13-20. |
[11] | 黄晓军. 细胞免疫治疗在血液系统恶性肿瘤的应用进展[J]. 山东大学学报 (医学版), 2019, 57(7): 1-5. |
[12] | 王昭. 噬血细胞性淋巴组织细胞增多症治疗的临床研究新进展[J]. 山东大学学报 (医学版), 2019, 57(7): 44-49. |
[13] | 郑清月,赵秋红,渠香云,董肇楠,马雪情,贾云莉. 血清外泌体miR-205-5p/miR-152-5p对早期非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(10): 101-106. |
[14] | 谢厚耐,李猛,许林,王晖,彭岳,彭忠民. 吉非替尼对比培美曲塞联合顺铂治疗术后EGFR突变阳性Ⅱ~ⅢA期肺腺癌的临床分析[J]. 山东大学学报 (医学版), 2018, 56(9): 29-34. |
[15] | 姜运峰,董晓鹏,赵小刚. PD-1单克隆抗体联合血管内皮抑素在Lewis肺癌小鼠的抗肿瘤效应[J]. 山东大学学报 (医学版), 2018, 56(9): 11-16. |
|