您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (11): 19-28.doi: 10.6040/j.issn.1671-7554.0.2021.0603

• 临床医学 • 上一篇    下一篇

基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效

庞兆飞1,2*,柳勇1*,赵小刚3,闫涛1,陈效伟1,杜贾军1,4   

  1. 1. 山东大学附属省立医院肿瘤研究所, 山东 济南 250021;2. 山东大学附属省立医院肿瘤科, 山东 济南 250021;3. 山东大学第二医院胸外科, 山东 济南 250033;4. 山东大学附属省立医院胸外科, 山东 济南 250021
  • 发布日期:2021-11-11
  • 通讯作者: 杜贾军. E-mail:dujiajun@sdu.edu.cn*共同第一作者.
  • 基金资助:
    山东省自然科学基金(ZR2020QH214)

Construction of a stemness-based scoring model predicting the efficacy of immunotherapy in lung adenocarcinoma based on public databases

PANG Zhaofei1,2*, LIU Yong1*, ZHAO Xiaogang3, YAN Tao1, CHEN Xiaowei1, DU Jiajun1,4   

  1. 1. Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    2. Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    3. Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    4. Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
  • Published:2021-11-11

摘要: 目的 鉴定肺腺癌肿瘤干细胞相关基因亚型,构建肿瘤干性评分模型以预测肺腺癌免疫检查点抑制治疗疗效。 方法 从TCGA数据库下载肺腺癌RNA测序数据,使用“limma”包分析肺腺癌(535例)与癌旁组织(59例)中329个肿瘤干细胞相关基因的差异表达(FDR<0.05, |log2 Fold Change|>2),利用差异基因鉴定肺腺癌肿瘤干细胞相关亚型,通过单因素Cox回归分析进一步筛选出肿瘤干细胞相关亚型之间对预后有意义的共同差异基因。基于主成分分析(PCA)算法,利用123个预后有意义的共同差异基因对TCGA与GEO合并后的630例肺腺癌患者进行肿瘤干性评分,利用Kaplan-Meier 曲线分析确定最佳截断值,将肺腺癌患者分成高、低肿瘤干性评分组(截断值为-1.91)。探究不同肺腺癌肿瘤干细胞相关亚型和肿瘤干性评分组在肿瘤微环境、免疫治疗方面的差异。 结果 鉴定出了36个差异表达基因和3个预后有统计学意义的肿瘤干细胞相关亚型(CSC-A、 CSC-B、 CSC-C)(P=0.033),其在免疫细胞浸润方面差异有统计学意义并与抗原递呈、细胞毒性作用等多条免疫通路相关。单因素Cox回归分析筛选出123个对预后有意义的共同差异基因,构建了肿瘤干性评分模型。低肿瘤干性评分组各类免疫细胞浸润程度普遍上升,PD1、PD-L1、CTLA4表达显著升高。无论是单独的抗CTLA4或抗PD1治疗,亦或是二者联合治疗,低肿瘤干性评分组的疗效都优于高肿瘤干性评分组,无免疫检查点抑制治疗时,高、低肿瘤干性评分组的疗效差异无统计学意义(P=0.060)。在抗PD-L1和抗PD1的两个独立免疫治疗队列中,低肿瘤干性评分组的反应率均高于高肿瘤干性评分组(抗PD-L1治疗队列反应率:50% vs 20%;PD1治疗队列反应率:23% vs 0%)。 结论 肿瘤干性评分模型在预测肺腺癌患者免疫检查点抑制治疗疗效方面具有潜在价值,有望为肺腺癌患者免疫检查点抑制治疗提供理论依据。

关键词: 肿瘤干性, 免疫治疗, 肺腺癌, 肿瘤微环境, 免疫检查点

Abstract: Objective To predict immune checkpoint blockade(ICB)response in lung adenocarcinoma(LUAD)by identifying LUAD subtypes related to cancer stem cells and constructing a stemness-based scoring model. Methods LUAD RNA-seq data were obtained from TCGA database. By “limma” package, 329 differentially expressed genes(DEGs)related to cancer stem cells between LUAD(535 cases)and adjacent tissues(59 cases)were identified to classify LUAD into different subtypes(FDR<0.05, |log2 Fold Change|>2). By univariate Cox regression analysis, the common prognostic DEGs among different subtypes were further screened out. Using principal component analysis(PCA)and the 123 common prognostic DEGs, a stemness-based scoring model was established for 630 LUAD patients from TCGA and GEO. The cutoff value, determined by Kaplan-Meier curves analysis, was used to stratify LUAD patients into high- and low-score groups(cutoff value=-1.91). Furthermore, difference of distinct subtypes and stemness-based scores on tumor microenvironment(TME)and ICB therapy were analyzed. Results Thirty-six differentially expressed genes and three LUAD subtypes related to cancer stem cells(CSC-A, CSC-B, and CSC-C)were identified, overall survival rates of which were statistically different(P=0.033). The three subtypes greatly affected immune infiltration levels and were associated with multiple immune pathways, such as antigen presentation and cytotoxicity. A total of 123 common prognostic genes(P<0.05)were screened out to construct stemness-based scoring model by univariate Cox regression. In the low-score group, the infiltration of various immune cells and mRNA expressions of PD1, PD-L1 and CTLA4 were up-regulated. No matter anti-CTLA4 or anti-PD1 treatment alone, or combination of them, efficacy of the low-score group was better than that of the high-score group, and there was no significant difference in the efficacy of the two groups without ICB(P=0.060). In the anti-PD-L1 and anti-PD1 immunotherapy cohorts, the response rates of the low-score group were higher than that of the high-score group(the response rate of the anti-PD-L1 treatment cohorts: 50% vs 20%; the response rate of anti-PD1 treatment cohorts: 23% vs 0%). Conclusion Stemness-based scoring model has a potential to predict the efficacy of ICB therapy in LUAD patients, which is expected to provide a theoretical basis for ICB therapy in LUAD patients.

Key words: Cancer stemness, Immunotherapy, Lung adenocarcinoma, Tumor microenvironment, Immune checkpoint

中图分类号: 

  • R734.2
[1] Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2):117.
[2] Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
[3] Zhao Z, Zheng L, Chen W, et al. Delivery strategies of cancer immunotherapy: recent advances and future perspectives[J]. J Hematol Oncol, 2019, 12(1): 126.
[4] Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558.
[5] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723.
[6] Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell(CSC)resistance drivers[J]. Life Sci, 2019, 234: 116781. doi: 10.1016/j.lfs.2019.116781.
[7] Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications[J]. Annu Rev Pathol, 2016, 11: 47-76. doi: 10.1146/annurev-pathol-012615-044438.
[8] Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, et al. Cancer stem cell metabolism[J]. Breast Cancer Res, 2016, 18(1): 55.
[9] Huang T, Song X, Xu D, et al. Stem cell programs in cancer initiation, progression, and therapy resistance[J]. Theranostics, 2020, 10(19): 8721-8743.
[10] Quaglino E, Conti L, Cavallo F. Breast cancer stem cell antigens as targets for immunotherapy[J]. Semin Immunol, 2020, 47: 101386. doi: 10.1016/j.smim.2020.101386.
[11] Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab[J]. Cell, 2017, 171(4): 934-949.e16.
[12] Mariathasan S, Turley SJ, Nickles D, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548.
[13] Shi J, Hua X, Zhu B, et al. Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study[J]. PLoS Med, 2016, 13(12): e1002162.
[14] Spella M, Stathopoulos GT. Immune resistance in lung adenocarcinoma[J]. Cancers(Basel), 2021, 13(3): 384.
[15] Gao S, Li N, Gao S, et al. Neoadjuvant PD-1 inhibitor(Sintilimab)in NSCLC[J]. J Thorac Oncol, 2020, 15(5): 816-826.
[16] Clara JA, Monge C, Yang Y, et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update[J]. Nat Rev Clin Oncol, 2020, 17(4): 204-232.
[17] Najafi M, Farhood B, Mortezaee K. Cancer stem cells(CSCs)in cancer progression and therapy[J]. J Cell Physiol, 2019, 234(6): 8381-8395.
[18] Raghavan S, Mehta P, Xie Y, et al. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments[J]. J Immunother Cancer, 2019, 7(1): 190.
[19] Miao Y, Yang H, Levorse J, et al. Adaptive immune resistance emerges from tumor-initiating stem cells[J]. Cell, 2019, 177(5): 1172-1186.e14.
[20] 王海洋, 董军. 靶向胶质瘤干细胞及其微环境的免疫治疗进展[J]. 中国现代神经疾病杂志, 2020, 20(2): 86-95. WANG Haiyang, DONG Jun. Immunotherapy targeting glioma stem cells and its microenvironment[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2020, 20(2): 86-95.
[21] Hinshaw DC, Shevde LA. The Tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566.
[22] Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1): 58.
[23] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-4566.
[24] 马冉冉, 韩琛, 王朝霞, 等. 人参总皂苷调控NK细胞活性促进5-氟尿嘧啶抗肿瘤的作用[J]. 山东大学学报(医学版), 2018, 56(4): 43-50. MA Ranran, HAN Chen, WANG Zhaoxia, et al. Total saponins of Panax ginseng promoting the anticancer activity of 5-Fluorouracil by mediating NK cell activity[J]. Journal of Shandong University(Health Sciences), 2018, 56(4): 43-50.
[25] Kurachi M. CD8 T cell exhaustion[J]. Semin Immunopathol, 2019, 41(3): 327-337.
[26] Zhang B, Chikuma S, Hori S, et al. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model[J]. Proc Natl Acad Sci U S A, 2016, 113(30): 8490-8495.
[27] Xia B, Herbst RS. Immune checkpoint therapy for non-small-cell lung cancer: an update[J]. Immunotherapy, 2016, 8(3): 279-298.
[28] Bassi R, Fornoni A, Doria A, et al. CTLA4-Ig in B7-1-positive diabetic and non-diabetic kidney disease[J]. Diabetologia, 2016, 59(1): 21-29.
[29] Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]. Nature reviews Cancer, 2016, 16(5): 275-287.
[30] Walk EE, Yohe SL, Beckman A, et al. The cancer immunotherapy biomarker testing landscape[J]. Arch Pathol Lab Med, 2020, 144(6): 706-724.
[31] Liu JN, Kong XS, Huang T, et al. Clinical implications of aberrant PD-1 and CTLA4 expression for cancer immunity and prognosis: a pan-cancer study[J]. Front Immunol, 2020, 11: 2048. doi: 10.3389/fimmu.2020.02048.
[1] 洪慧,张卫海,李惠娴,李伟伟,张金岭. 异时性阑尾印戒细胞癌合并肺腺癌双原发癌1例[J]. 山东大学学报 (医学版), 2022, 60(8): 130-132.
[2] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[3] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[4] 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27.
[5] 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8.
[6] 邓晓惠,郭玲. 免疫治疗在胚胎反复种植失败中的应用进展[J]. 山东大学学报 (医学版), 2021, 59(8): 32-37.
[7] 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18.
[8] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73.
[9] 杨秀婷,刘启功,左萍,刘正湘,左后娟. CD151-MUT突变对肺腺癌细胞A549迁移的影响及机制[J]. 山东大学学报 (医学版), 2020, 58(3): 81-86.
[10] 吴德沛,陈晓晨. 淋巴瘤免疫治疗的现状及展望[J]. 山东大学学报 (医学版), 2019, 57(7): 13-20.
[11] 黄晓军. 细胞免疫治疗在血液系统恶性肿瘤的应用进展[J]. 山东大学学报 (医学版), 2019, 57(7): 1-5.
[12] 王昭. 噬血细胞性淋巴组织细胞增多症治疗的临床研究新进展[J]. 山东大学学报 (医学版), 2019, 57(7): 44-49.
[13] 郑清月,赵秋红,渠香云,董肇楠,马雪情,贾云莉. 血清外泌体miR-205-5p/miR-152-5p对早期非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(10): 101-106.
[14] 谢厚耐,李猛,许林,王晖,彭岳,彭忠民. 吉非替尼对比培美曲塞联合顺铂治疗术后EGFR突变阳性Ⅱ~ⅢA期肺腺癌的临床分析[J]. 山东大学学报 (医学版), 2018, 56(9): 29-34.
[15] 姜运峰,董晓鹏,赵小刚. PD-1单克隆抗体联合血管内皮抑素在Lewis肺癌小鼠的抗肿瘤效应[J]. 山东大学学报 (医学版), 2018, 56(9): 11-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高静,陈雯,张同霞,王小花,戴廷军,姚红,赵秀鹤,迟兆富,单培彦 . 颞叶癫痫大鼠海马线粒体细胞色素氧化酶亚基Ⅲ和Ⅳ表达的变化[J]. 山东大学学报(医学版), 2007, 45(8): 817 -820 .
[2] 肖伟玲,林亚杰,牟东珍,孙萍,梁淑娟 . 分泌型人IL-1β表达载体的构建及在H7402细胞中的表达[J]. 山东大学学报(医学版), 2008, 46(2): 119 -122 .
[3] . 干细胞标记物LGR5在结直肠癌发生发展中的表达及意义[J]. 山东大学学报(医学版), 2009, 47(8): 85 -88 .
[4] 于渊1,李岩1,荣风年2,梁婧1,刘晓琳1,王福立1. 自体CIK细胞治疗对卵巢癌调节性T细胞的影响[J]. 山东大学学报(医学版), 2010, 48(5): 101 -104 .
[5] 林文俐1,张楠2,曲飞3,刘杰2,王婧男4,解田燕3,孙玉萍2. 肝细胞生长因子和血管内皮生长因子C在非小细胞肺癌中的共表达及与淋巴管生成的相关性[J]. 山东大学学报(医学版), 2010, 48(10): 111 -115 .
[6] 刘益民,杜鲁涛,王丽丽,蒋秀梅,李娟,曲爱林,王海燕,郑桂喜,张欣,杨咏梅,王传新. 膀胱癌患者血清microRNA检测中内参基因的筛选及验证[J]. 山东大学学报(医学版), 2014, 52(5): 86 -91 .
[7] 王海峰,史本康,张克勤,李永智,朱耀丰,王海新. B超检测的精索静脉直径及返流与术后精液质量的关系[J]. 山东大学学报(医学版), 2007, 45(7): 751 -752 .
[8] 张元凯,刘培来,李德强,李明. 枢椎椎板螺钉联合寰椎侧块螺钉固定技术在复杂寰枢椎脱位中的应用[J]. 山东大学学报(医学版), 2010, 48(11): 98 .
[9] 唐海荣,袁斌斌,胡大一,布艾加尔·哈斯木. 踝臂指数对心血管高危患者全因及心血管死亡率的预测作用[J]. 山东大学学报(医学版), 2013, 51(1): 53 .
[10] 付开丽1,张学义2,朱萌3,王志浩1,王华1,钟明1,张运1,张薇1. 不同病因心房颤动患者卒中危险的评估[J]. 山东大学学报(医学版), 2013, 51(06): 61 -63 .