Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (5): 8-14.doi: 10.6040/j.issn.1671-7554.0.2021.0273
• Current Advance of Basic and Clinical Medical Virology • Previous Articles Next Articles
CLC Number:
1 | Katz IT , Weintraub R , Bekker LG , et al. From vaccine nationalism to vaccine equity-finding a path forward[J]. Lancet, 2021, 384 (14): 1281- 1283. |
2 |
Ansariniya H , Seifati SM , Zaker E , et al. Comparison of immune response between SARS, MERS, and COVID-19 infection, perspective on vaccine design and development[J]. Biomed Res Int, 2021, 2021, 8870425.
doi: 10.1155/2021/8870425 |
3 |
Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members . Operation Warp Speed: implications for global vaccine security[J]. Lancet Glob Health, 2021, S2214-109X (21): 00140- 00146.
doi: 10.1016/S2214-109X(21)00140-6 |
4 |
Alfaro-Murillo JA , Avila-Aguero ML , Fitzpatrick MC , et al. The case for replacing live oral polio vaccine with inactivated vaccine in the Americas[J]. Lancet, 2020, 395 (10230): 1163- 1166.
doi: 10.1016/S0140-6736(20)30213-0 |
5 |
Bravo C , Mege L , Vigne C , et al. Clinical experience with the inactivated hepatitis a vaccine, Avaxim 80U Pediatric[J]. Expert Rev Vaccines, 2019, 18 (3): 209- 223.
doi: 10.1080/14760584.2019.1580578 |
6 |
Mao QY , Wang Y , Bian L , et al. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD)[J]. Expert Rev Vaccines, 2016, 15 (5): 599- 606.
doi: 10.1586/14760584.2016.1138862 |
7 |
Wood JM , Robertson JS . From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza[J]. Nat Rev Microbiol, 2004, 2 (10): 842- 847.
doi: 10.1038/nrmicro979 |
8 |
Tahir Ul Qamar M , Saleem S , Ashfaa UA , et al. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study[J]. J Transl Med, 2019, 17 (1): 362.
doi: 10.1186/s12967-019-2116-8 |
9 |
Watanabe Y , Allen JD , Wrapp D , et al. Site-specific glycan analysis of the SARS-CoV-2 spike[J]. Science, 2020, 369 (6501): 330- 333.
doi: 10.1126/science.abb9983 |
10 |
Jeyanathan M , Afkhami S , Smaill F , et al. Immunological considerations for COVID-19 vaccine strategies[J]. Nat Rev Immunol, 2020, 20 (10): 615- 632.
doi: 10.1038/s41577-020-00434-6 |
11 |
Lamb YN . Cell-based quadrivalent inactivated influenza virus vaccine (FlucelvaxTetra/Flucelvax Quadrivalent): a review in the prevention of influenza[J]. Drugs, 2019, 79 (12): 1337- 1348.
doi: 10.1007/s40265-019-01176-z |
12 |
Izurieta HS , Chillarige Y , Kelman J , et al. Relative effectiveness of cell-cultured and egg-based influenza vaccines among elderly persons in the united states, 2017-2018[J]. J Infect Dis, 2019, 220 (8): 1255- 1264.
doi: 10.1093/infdis/jiy716 |
13 |
Wang H , Zhang Y , Huang B , et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2[J]. Cell, 2020, 182 (3): 713- 721.
doi: 10.1016/j.cell.2020.06.008 |
14 |
Gao Q , Bao L , Mao H , et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 369 (6499): 77- 81.
doi: 10.1126/science.abc1932 |
15 |
Jimenez-Guardeno JM , Regla-Nava JA , Nieto-Torres JL , et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine[J]. PLoS Pathog, 2015, 11 (10): e1005215.
doi: 10.1371/journal.ppat.1005215 |
16 |
Mueller S , Stauft CB , Kalkeri R , et al. A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates[J]. Vaccine, 2020, 38 (14): 2943- 2948.
doi: 10.1016/j.vaccine.2020.02.056 |
17 |
Bolles M , Deming D , Long K , et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge[J]. J Virol, 2011, 85 (23): 12201- 12215.
doi: 10.1128/JVI.06048-11 |
18 |
Diamond MS , Pierson TC . The challenges of vaccine development against a new virus during a pandemic[J]. Cell Host Microbe, 2020, 27 (5): 699- 703.
doi: 10.1016/j.chom.2020.04.021 |
19 |
Oscherwitz J . The promise and challenge of epitope-focused vaccines[J]. Hum Vaccin Immunother, 2016, 12 (8): 2113- 2116.
doi: 10.1080/21645515.2016.1160977 |
20 |
Liang JG , Su D , Song TZ , et al. S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates[J]. Nat Commun, 2021, 12 (1): 1346.
doi: 10.1038/s41467-021-21634-1 |
21 |
Yang J , Wang W , Chen Z , et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J]. Nature, 2020, 586 (7830): 572- 577.
doi: 10.1038/s41586-020-2599-8 |
22 |
Nooraei S , Bahrulolum H , Hoseini ZS , et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers[J]. J Nanobiotechnology, 2021, 19 (1): 59.
doi: 10.1186/s12951-021-00806-7 |
23 |
Qian C , Liu X , Xu Q , et al. Recent progress on the versatility of virus-like particles[J]. Vaccines (Basel), 2020, 8 (1): 139.
doi: 10.3390/vaccines8010139 |
24 |
Li Z , Wang D , Gu Y , et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus[J]. mBio, 2017, 8 (5): e00787- 17.
doi: 10.1128/mBio.00787-17 |
25 |
Lokugamage KG , Yoshikawa-Iwata N , Ito N , et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV[J]. Vaccine, 2008, 26 (6): 797- 808.
doi: 10.1016/j.vaccine.2007.11.092 |
26 |
Lu X , Chen Y , Bai B , et al. Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice[J]. Immunology, 2007, 122 (4): 496- 502.
doi: 10.1111/j.1365-2567.2007.02676.x |
27 |
Naskalska A , Dabrowska A , Nowak P , et al. Novel coronavirus-like particles targeting cells lining the respiratory tract[J]. PLoS One, 2018, 13 (9): e0203489.
doi: 10.1371/journal.pone.0203489 |
28 |
Donaldson B , Lateef Z , Walker GF , et al. Virus-like particle vaccines: immunology and formulation for clinical translation[J]. Expert Rev Vaccines, 2018, 17 (9): 833- 849.
doi: 10.1080/14760584.2018.1516552 |
29 |
Humphreys IR , Sebastian S . Novel viral vectors in infectious diseases[J]. Immunology, 2018, 153 (1): 1- 9.
doi: 10.1111/imm.12829 |
30 |
Afkhami S , Yao Y , Xing Z . Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens[J]. Mol Ther Methods Clin Dev, 2016, 3, 16030.
doi: 10.1038/mtm.2016.30 |
31 |
Zhu FC , Hou LH , Li JX , et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial[J]. Lancet, 2015, 385 (9984): 2272- 2279.
doi: 10.1016/S0140-6736(15)60553-0 |
32 |
Zhu FC , Li YH , Guan XH , et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395 (10240): 1845- 1854.
doi: 10.1016/S0140-6736(20)31208-3 |
33 |
Zhu FC , Guan XH , Li YH , et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2020, 396 (10249): 479- 488.
doi: 10.1016/S0140-6736(20)31605-6 |
34 |
Henao-Restrepo AM , Longini IM , Egger M , et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial[J]. Lancet, 2015, 386 (9996): 857- 866.
doi: 10.1016/S0140-6736(15)61117-5 |
35 |
Pardi N , Hogan MJ , Porter FW , et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17 (4): 261- 279.
doi: 10.1038/nrd.2017.243 |
36 |
Chagla Z . The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose[J]. Ann Intern Med, 2021, 174 (2): JC15.
doi: 10.7326/ACPJ202102160-015 |
37 |
Walsh EE , FrenckJr RW , Falsey AR , et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates[J]. N Engl J Med, 2020, 383 (25): 2439- 2450.
doi: 10.1056/NEJMoa2027906 |
38 |
Pardi N , Parkhouse K , Kirkpatrick E , et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies[J]. Nat Commun, 2018, 9 (1): 3361.
doi: 10.1038/s41467-018-05482-0 |
39 |
Feldman RA , Fuhr R , Smolenov I , et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials[J]. Vaccine, 2019, 37 (25): 3326- 3334.
doi: 10.1016/j.vaccine.2019.04.074 |
40 |
Shaw CA , Ciarlet M , Cooper BW , et al. The path to an RSV vaccine[J]. Curr Opin Virol, 2013, 3 (3): 332- 342.
doi: 10.1016/j.coviro.2013.05.003 |
41 |
Sheerin D , Openshaw PJ , Pollard AJ . Issues in vaccinology: Present challenges and future directions[J]. Eur J Immunol, 2017, 47 (12): 2017- 2025.
doi: 10.1002/eji.201746942 |
42 |
Lee WS , Wheatley AK , Kent SJ , et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J]. Nat Microbiol, 2020, 5 (10): 1185- 1191.
doi: 10.1038/s41564-020-00789-5 |
43 |
Morrone SR , Lok SM . Structural perspectives of antibody-dependent enhancement of infection of dengue virus[J]. Curr Opin Virol, 2019, 36, 1- 8.
doi: 10.1016/j.coviro.2019.02.002 |
44 |
Boyaka PN . Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems[J]. J Immunol, 2017, 199 (1): 9- 16.
doi: 10.4049/jimmunol.1601775 |
45 |
Woodrow KA , Bennett KM , Lo DD . Mucosal vaccine design and delivery[J]. Annu Rev Biomed Eng, 2012, 14, 17- 46.
doi: 10.1146/annurev-bioeng-071811-150054 |
46 | Miquel-Clopes A , Bentley EG , Stewart JP , et al. Mucosal vaccines and technology[J]. Clin Exp Immunol, 2019, 196 (2): 205- 214. |
47 |
Coffman RL , Sher A , Seder RA . Vaccine adjuvants: putting innate immunity to work[J]. Immunity, 2010, 33 (4): 492- 503.
doi: 10.1016/j.immuni.2010.10.002 |
[1] | ZHOU Xi, HUANG Muhan, REN Yujie, QIU Yang. SARS-CoV-2 infection, innate immunity and inflammatory response [J]. Journal of Shandong University (Health Sciences), 2021, 59(5): 15-21. |
[2] | DONG Hongjie, ZHANG Junmei, WANG Shuai, WANG Hongwei, ZHANG KundiHU Wei, XIE Xiaohong, XIE Shiling, GU Lichuan. Research on mixed sample test for SARS-CoV-2 [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 1-5. |
[3] | YU Ying, ZHANG Gong, LIU Jing, YAN Shitong, HAN Tao, HUANG Hailiang. Potential mechanism of Astragalus membranaceus in the prevention of COVID-19 based on network pharmacology and molecular docking [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 6-16. |
[4] | YU Xueyuan, ZHANG Shuo, YAN Fangfang, SU Dezhen. Comparison of clinical efficacy of Qingfei Paidu decoction combined with western medicine in 43 cases and single western medicine in 46 cases in the treatment of COVID-19 [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 47-53. |
[5] | WANG Ling, CAO Haixia, ZHANG Ling, ZHANG Wenna, PAN Yanping, SHI Ying, ZHANG Wei, CUI Feng. Investigation and analysis of the characteristics of a family cluster of coronavirus disease 2019 in Zibo [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 100-104. |
[6] | BAI Yao, CHEN Zhijun, SONG Shuxuan, HE Zhen, CHEN Baozhong, SHAO Zhongjun, LIU Kun. Investigation of a family cluster outbreak of coronavirus disease 2019 in Xian [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 95-99. |
[7] | ZHANG Hui, SONG Shuxuan, LIU Jifeng, HE Zhen, SHAO Zhongjun, LIU Kun. Epidemiological characteristics of COVID-19 in Xi’an city [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 89-94. |
[8] | LIU Lili, JIA Yan, QI Chang, ZHU Yuchen, LI Chunyu, SHE Kaili, LIU Tingxuan, LI Xiujun. Clustering distribution of COVID-19 in Wenzhou from January to March 2020 based on spatiotemporal analysis [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 82-88. |
[9] | LIU Tingxuan, QI Chang, SHE Kaili, JIA Yan, ZHU Yuchen, LI Chunyu, LIU Lili, WANG Xu, ZHANG Zhihua, LI Xiujun. Epidemiological characteristics and spatial-temporal clustering of COVID-19 in Hebei Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 74-81. |
[10] | JIA Yan, LI Chunyu, LIU Lili, SHE Kaili, LIU Tingxuan, ZHU Yuchen, QI Chang, ZHANG Dandan, WANG Xu, CHEN Enfu, LI Xiujun. Epidemic characteristics and spatial analysis of COVID-19 in Zhejiang Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 66-73. |
[11] | LIU Jun, LI Huan, ZHANG Shiyu, ZHANG Peng, AI Siqi, TIAN Fei, LIN Hualiang. Risk factors of severe and critical patients with COVID-19 in Hubei, China [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 60-65. |
[12] | QI Chang, ZHU Yuchen, LI Chunyu, LIU Lili, ZHANG Dandan, WANG Xu, SHE Kaili, CHEN Ming, KANG Dianmin, LI Xiujun. Influence factors of COVID-19 in Shandong Province based on geographically weighted generalized linear model [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 53-59. |
[13] | SHE Kaili, ZHANG Dandan, QI Chang, LIU Tingxuan, JIA Yan, ZHU Yuchen, LI Chunyu, LIU Lili, WANG Xu, SU Hong, LI Xiujun. Epidemiological characteristics and incubation period of coronavirus disease 2019 in Anhui Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 44-52. |
[14] | LI Chunyu, ZHU Yuchen, QI Chang, LIU Lili, ZHANG Dandan, WANG Xu, XU Xueli, LI Xiujun. Epidemic dynamics of COVID-19 in Xinyang City, Henan Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 38-43. |
[15] | ZHU Yuchen, LI Chunyu, QI Chang, WANG Ying, LIU Lili, ZHANG Dandan, WANG Xu, KANG Dianmin, LI Xiujun. Reproduction number estimation and epidemic analysis of coronavirus disease 2019 in Shandong Province based on Poisson process [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 32-37. |
|