Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (5): 15-21.doi: 10.6040/j.issn.1671-7554.0.2021.0368

• Current Advance of Basic and Clinical Medical Virology • Previous Articles     Next Articles

SARS-CoV-2 infection, innate immunity and inflammatory response

Xi ZHOU*(),Muhan HUANG*(),Yujie REN,Yang QIU   

  1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2021-04-02 Online:2021-05-10 Published:2021-06-01
  • Contact: Xi ZHOU,Muhan HUANG E-mail:zhouxi@wh.iov.cn;huangmuhan@wh.iov.cn

Abstract:

Coronavirus disease 2019 (COVID-19), which is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become the worst pandemic and public health crisis across the globe once a century. This pandemic has caused huge losses in both human lives and global economy. Innate immunity is the first line of defense against pathogenic invasions. Extensive studies by scientists in China and the world have reported that SARS-CoV-2 can employ multiple strategies to evade host innate immunity, and such immune evasion mechanisms have become critical contributing factors for the pathogenicity of SARS-CoV-2. On the other hand, the pathogenesis of COVID-19 has been found to be closely relevant with the pro-inflammatory responses induced by SARS-CoV-2 infection in humans. This paper provides a brief review to the relationship between SARS-CoV-2 infection and innate immunity as well as inflammation.

Key words: Severe acute respiratory syndrome coronavirus-2, Coronavirus disease 2019, Innate immunity, Immune evasion, Inflammation, Cytokine storm

CLC Number: 

  • Q93
1 Jiang S , Shi Z , Shu Y , et al. A distinct name is needed for the new coronavirus[J]. Lancet, 2020, 395 (10228): 949.
doi: 10.1016/S0140-6736(20)30419-0
2 Hu B , Guo H , Zhou P , et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nat Rev Microbiol, 2020, 19 (3): 141- 154.
3 Lu R , Zhao X , Li J , et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395 (10224): 565- 574.
doi: 10.1016/S0140-6736(20)30251-8
4 Guan WJ , Ni ZY , Hu Y , et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382 (18): 1708- 1720.
doi: 10.1056/NEJMoa2002032
5 Chen N , Zhou M , Dong X , et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395 (10223): 507- 513.
doi: 10.1016/S0140-6736(20)30211-7
6 Xydakis MS , Mobaraki PD , Holbrook EH , et al. Smell and taste dysfunction in patients with COVID-19[J]. Lancet Infect Dis, 2020, 20 (9): 1015- 1016.
doi: 10.1016/S1473-3099(20)30293-0
7 Huang C , Wang Y , Li X , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395 (10223): 497- 506.
doi: 10.1016/S0140-6736(20)30183-5
8 Li W , Moore MJ , Vasilieva N , et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426 (6965): 450- 454.
doi: 10.1038/nature02145
9 Hoffmann M , Kleine-Weber H , Schroeder S , et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181 (2): 271- 280.e8.
doi: 10.1016/j.cell.2020.02.052
10 Cantuti-Castelvetri L , Ojha R , Pedro LD , et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370 (6518): 856- 860.
doi: 10.1126/science.abd2985
11 Ou X , Liu Y , Lei X , et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV[J]. Nat Commun, 2020, 11 (1): 1620.
doi: 10.1038/s41467-020-15562-9
12 Zielger CGK , Allon SJ , Nyquist SK , et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues[J]. Cell, 2020, 181 (5): 1016- 1035.e19.
doi: 10.1016/j.cell.2020.04.035
13 Onabajo OO , Banday AR , Stanifer ML , et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor[J]. Nat Genet, 2020, 52 (12): 1283- 1293.
doi: 10.1038/s41588-020-00731-9
14 Acharya D , Liu G , Gack MU . Dysregulation of type I interferon responses in COVID-19[J]. Nat Rev Immunol, 2020, 20 (7): 397- 398.
doi: 10.1038/s41577-020-0346-x
15 Xia H , Cao Z , Xie X , et al. Evasion of type I interferon by SARS-CoV-2[J]. Cell Rep, 2020, 33 (1): 108234.
doi: 10.1016/j.celrep.2020.108234
16 Lei X , Dong X , Ma R , et al. Activation and evasion of type I interferon responses by SARS-CoV-2[J]. Nat Commun, 2020, 11 (1): 3810.
doi: 10.1038/s41467-020-17665-9
17 Konno Y , Kimura I , Uriu K , et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant[J]. Cell Rep, 2020, 32 (12): 108185.
doi: 10.1016/j.celrep.2020.108185
18 Mu J , Fang Y , Yang Q , et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2[J]. Cell Discov, 2020, 6, 65.
doi: 10.1038/s41421-020-00208-3
19 Zheng Y , Zhuang MW , Han L , et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling[J]. Signal Transduct Target Ther, 2020, 5 (1): 299.
doi: 10.1038/s41392-020-00438-7
20 Israelow B , Song E , Mao T , et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling[J]. J Exp Med, 2020, 217 (12): e20201241.
doi: 10.1084/jem.20201241
21 Lokugamaga KG , Hage A , Vries M , et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV[J]. J Virol, 2020, 94 (23): e01410- 20.
doi: 10.1128/JVI.01410-20
22 Bastard P , Rosen LB , Zhang Q , et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19[J]. Science, 2020, 370 (6515): eabd4585.
doi: 10.1126/science.abd4585
23 Vaninov N . In the eye of the COVID-19 cytokine storm[J]. Nat Rev Immunol, 2020, 20 (5): 277.
doi: 10.1038/s41577-020-0305-6
24 Mehta P , McAuley DF , Brown M , et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395 (10229): 1033- 1034.
doi: 10.1016/S0140-6736(20)30628-0
25 Xu ZS , Shu T , Kang L , et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients[J]. Signal Transduct Target Ther, 2020, 5 (1): 100.
doi: 10.1038/s41392-020-0211-1
26 Blanco-Melo D , Nilsson-Payant BE , Liu WC , et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19[J]. Cell, 2020, 181 (5): 1036- 1045.e9.
doi: 10.1016/j.cell.2020.04.026
27 Hadjadj J , Yatim N , Barnabei L , et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients[J]. Science, 2020, 369 (6504): 718- 724.
doi: 10.1126/science.abc6027
28 Wang C , Xu J , Wang S , et al. Imaging mass cytometric analysis of postmortem tissues reveals dysregulated immune cell and cytokine responses in multiple organs of COVID-19 patients[J]. Front Microbiol, 2020, 11, 600989.
doi: 10.3389/fmicb.2020.600989
29 Sinha P , Matthay MA , Calfee CS , et al. Is a "cytokine storm" relevant to COVID-19?[J]. JAMA Intern Med, 2020, 180 (9): 1152- 1154.
doi: 10.1001/jamainternmed.2020.3313
30 Shu T , Ning W , Wu D , et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19[J]. Immunity, 2020, 53 (5): 1108- 1122.e5.
doi: 10.1016/j.immuni.2020.10.008
31 Regn M , Laggerbauer B , Jentzsch C , et al. Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium[J]. J Mol Cell Cardiol, 2016, 99, 57- 64.
doi: 10.1016/j.yjmcc.2016.08.010
32 Wu D , Shu T , Yang X , et al. Plasma metabolomic and lipidomic alterations associated with COVID-19[J]. Natl Sci Rev, 2020, 7, 1157- 1168.
doi: 10.1101/2020.04.05.20053819
33 Shen B , Yi X , Sun Y , et al. Proteomic and metabolomic characterization of COVID-19 patient sera[J]. Cell, 2020, 182 (1): 59- 72.e15.
doi: 10.1016/j.cell.2020.05.032
34 Ranucci M , Ballotta A , Dadda UD , et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome[J]. J Thromb Haemost, 2020, 18 (7): 1747- 1751.
doi: 10.1111/jth.14854
35 Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8 (4): 420- 422.
doi: 10.1016/S2213-2600(20)30076-X
36 Wang N , Zhang Y , Zhu L , et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients[J]. Cell Host Microbe, 2020, 28 (3): 455- 464.e2.
doi: 10.1016/j.chom.2020.07.005
37 Zhou Q , Chen V , Shannon CP , et al. Interferon-α2b treatment for COVID-19[J]. Front Immunol, 2020, 11, 1061.
doi: 10.3389/fimmu.2020.01061
38 Zhou Y , Fu B , Zheng X , et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients[J]. Natl Sci Rev, 2020, 7 (6): 998- 1002.
doi: 10.1093/nsr/nwaa041
39 Zhou Y , Wei H . Tocilizumab is recommended for the treatment of severe COVID-19[J]. EBioMedicine, 2020, 61, 103045.
doi: 10.1016/j.ebiom.2020.103045
40 Xu X , Han M , Li T , et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117 (20): 10970- 10975.
doi: 10.1073/pnas.2005615117
41 Guo C , Li B , Ma H , et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[J]. Nat Commun, 2020, 11 (1): 3924.
doi: 10.1038/s41467-020-17834-w
42 Wang J , Jiang M , Chen X , et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts[J]. J Leukoc Biol, 2020, 108 (1): 17- 41.
doi: 10.1002/JLB.3COVR0520-272R
43 Bengtsson AA , Sturfelt G , Lood C , et al. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64 (5): 1579- 1588.
doi: 10.1002/art.33493
44 Bjrk P , Bjrk A , Vogl T , et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides[J]. PLoS Biol, 2009, 7 (4): e97.
doi: 10.1371/journal.pbio.1000097
45 Guo QR , Zhao YC , Li JH , et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19[J]. Cell Host Microbe, 2021, 29 (2): 222- 235.e4.
doi: 10.1016/j.chom.2020.12.016
[1] HAO Yue-Wei, LIU Xue-Ping, ZHAO Ting-Ting, ZHENG Min, WANG Yi-Bing. Relationship between the COX-2 gene polymorphisms and atherothrombotic ischemic stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 95-98.
[2] XU Ning-Yu, WANG Lei, HAO En-Kui, SU Guo-Hai. Effects of atorvastatin given before acute PCI on inflammatory mediators and left ventricular function in STEMI [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 69-72.
[3] YU Ying, ZHANG Gong, LIU Jing, YAN Shitong, HAN Tao, HUANG Hailiang. Potential mechanism of Astragalus membranaceus in the prevention of COVID-19 based on network pharmacology and molecular docking [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 6-16.
[4] YU Xueyuan, ZHANG Shuo, YAN Fangfang, SU Dezhen. Comparison of clinical efficacy of Qingfei Paidu decoction combined with western medicine in 43 cases and single western medicine in 46 cases in the treatment of COVID-19 [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 47-53.
[5] YANG Zhen, ZHANG Yanmin, WANG Qianqian, CHEN Huimin, FENG Qiang, ZHOU Shaoying. Correlations of microRNA-103 and microRNA-107 expressions with the clinical characteristics and prognosis of 120 cases of sepsis [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 77-85.
[6] Xiujun LI,Xinlou LI,Kun LIU,Xiaobo ZHAO,Meng MA,Bo SUN. Application of geographic information system in the control of COVID-19 epidemic [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 13-19.
[7] XU Lijun, LIU Wenhui, LIU Yuan, LI Meixia, LUO Lei, OU Chunquan. Construction of SEIQCR epidemic model and its application in the evaluation of public health interventions on COVID-19 in Guangzhou [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 20-24.
[8] JIN Xinye, LU Zhenzhen, DING Zhongxing, CHEN Feng, PENG Zhihang. A dynamic modeling study on the effects of Wuhan traffic control and centralized quarantine measures on COVID-19 epidemic [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 25-31.
[9] LI Chunyu, ZHU Yuchen, QI Chang, LIU Lili, ZHANG Dandan, WANG Xu, XU Xueli, LI Xiujun. Epidemic dynamics of COVID-19 in Xinyang City, Henan Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 38-43.
[10] SHE Kaili, ZHANG Dandan, QI Chang, LIU Tingxuan, JIA Yan, ZHU Yuchen, LI Chunyu, LIU Lili, WANG Xu, SU Hong, LI Xiujun. Epidemiological characteristics and incubation period of coronavirus disease 2019 in Anhui Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 44-52.
[11] QI Chang, ZHU Yuchen, LI Chunyu, LIU Lili, ZHANG Dandan, WANG Xu, SHE Kaili, CHEN Ming, KANG Dianmin, LI Xiujun. Influence factors of COVID-19 in Shandong Province based on geographically weighted generalized linear model [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 53-59.
[12] LIU Jun, LI Huan, ZHANG Shiyu, ZHANG Peng, AI Siqi, TIAN Fei, LIN Hualiang. Risk factors of severe and critical patients with COVID-19 in Hubei, China [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 60-65.
[13] JIA Yan, LI Chunyu, LIU Lili, SHE Kaili, LIU Tingxuan, ZHU Yuchen, QI Chang, ZHANG Dandan, WANG Xu, CHEN Enfu, LI Xiujun. Epidemic characteristics and spatial analysis of COVID-19 in Zhejiang Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 66-73.
[14] LIU Tingxuan, QI Chang, SHE Kaili, JIA Yan, ZHU Yuchen, LI Chunyu, LIU Lili, WANG Xu, ZHANG Zhihua, LI Xiujun. Epidemiological characteristics and spatial-temporal clustering of COVID-19 in Hebei Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 74-81.
[15] LIU Lili, JIA Yan, QI Chang, ZHU Yuchen, LI Chunyu, SHE Kaili, LIU Tingxuan, LI Xiujun. Clustering distribution of COVID-19 in Wenzhou from January to March 2020 based on spatiotemporal analysis [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[2] LI Songlin, LIU Peilai, LU Qunshan, MA Heran. Application of high tibial osteotomy combined with autologous adipose-derived mesenchymal stem cells injection in the repair of knee cartilage[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 82 -88 .
[3] . [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 122 -124 .
[4] Jizong ZHAO. Neurosurgery plays a key role in brain science research[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 1 -4 .
[5] Tao JIANG. The application of brain-like intelligence in the frontiers of brain science[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 10 -13 .
[6] Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42 -49, 73 .
[7] Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 81 -87 .
[8] WANG Hui, CHENG Lian, XU Shujun. Clinical observation of the effects of two endoscopic approaches on olfactory function in 232 patients undergoing pituitary tumor resection[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 95 -100 .
[9] . [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 123 -124 .
[10] LU Zilong, FU Zhentao, DU Enqing, XU Chunxiao, ZHANG Jiyu, CHU Jie, ZHANG Bingyin, WU Bingyi, GUO Xiaolei. A study on self-reported health-adjusted life expectancy of adults in Shandong Province, 2018[J]. Journal of Shandong University (Health Sciences), 2020, 1(9): 83 -88 .