Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 14-21.doi: 10.6040/j.issn.1671-7554.0.2019.1503

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

Intelligent diagnosis methods of Alzheimer's disease

Yilong YIN1,*(),Xiaoming XI2,Xianjing MENG3   

  1. 1. MLA Lab in School of Software, Shandong University, Jinan 250101, Shandong, China
    2. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China
    3. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Received:2019-12-27 Online:2020-08-07 Published:2020-08-07
  • Contact: Yilong YIN E-mail:ylyin@sdu.edu.cn

Abstract:

As the number of elderly people increases, Alzheimer's disease (AD) has become a tremendous economic and societal burden. The research on AD has been considered an important global public health topic. However, there is currently no cure for AD; therefore, early detection is very helpful for the diagnosis. Neuroimaging plays an important role for the early diagnosis of AD among all detection tools and has attracted great attention in recent years. In order to provide new insights into the intelligent diagnosis methods of AD, this paper reviews the recent advances including methods based on single-modality and multi-modality and discusses the future work.

Key words: Alzheimer's disease, Neuroimaging, Intelligent diagnosis

CLC Number: 

  • R574

Table 1

Introduction of existing databases"

数据库 包含模态 包含分组
ADNI MRI、PET、生物标记、临床评估分值等 NC、MCI、AD
OASIS MRI NC、轻中度AD
MIRIAD MRI、MMSE等 NC、轻中度AD
AIBL PET、CSF NC、MCI、AD

Fig.1

Introduction of AD diagnosis methods"

1 Thies W , Bleiler L . 2012 Alzheimer's disease facts and figures Alzheimer's Association[J]. Alzheimers & Dement, 2012, 8 (2): 131- 168.
2 The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends: world Alzheimer report[R]. London: Alzheimer's Disease International, 2015.
3 滕玉环, 周红, 张志珺. 阿尔茨海默病早期诊断生物学指标研究进展[J]. 中华脑血管病杂志(电子版), 2010, 4 (6): 24- 27.
TENG Yuhuan , ZHOU Hong , ZHANG Zhijun . Biomakers of early diagnosis of Alzheimer's disease[J]. Chinese Journal of Cerebrovascular Disease(Electronic Version), 2010, 4 (6): 24- 27.
4 Jagust W . Vulnerable neural systems and the borderland of brain aging and neurodegeneration[J]. Neuron, 2013, 77 (2): 219- 234.
doi: 10.1016/j.neuron.2013.01.002
5 Rathore S , Habes M , Iftikhar MA , et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. Neuroimage, 2017, 155: 530- 548.
doi: 10.1016/j.neuroimage.2017.03.057
6 Frisoni GB , Fox NC , Jack Jr CR , et al. The clinical use of structural MRI in Alzheimer disease[J]. Nat Rev Neurol, 2010, 6 (2): 67- 77.
7 Petrella JR , Coleman RE , Doraiswamy PM . Neuroimaging and early diagnosis of Alzheimer disease: a look to the future[J]. Radiology, 2003, 226 (2): 315- 336.
doi: 10.1148/radiol.2262011600
8 Rosen WG , Mohs RC , Davis KL , et al. A new rating scale for Alzheimer's disease[J]. Am J Psychiat, 1984, 141 (11): 1356- 1364.
doi: 10.1176/ajp.141.11.1356
9 Lian C , Liu M , Zhang J , et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42 (4): 880- 893.
doi: 10.1109/TPAMI.2018.2889096
10 Mueller SG , Weiner MW , Thal LJ , et al. The Alzheimer's disease neuroimaging initiative[J]. Neuroimag Clin N Am, 2005, 15 (4): 869- 877.
doi: 10.1016/j.nic.2005.09.008
11 Jack Jr CR , Bernstein MA , Fox NC , et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods[J]. J Magn Reson Imaging, 2008, 27 (4): 685- 691.
doi: 10.1002/jmri.21049
12 Marcus DS , Fotenos AF , Csernansky JG , et al. Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults[J]. J Cognitive Neurosci, 2010, 22 (12): 2677- 2684.
doi: 10.1162/jocn.2009.21407
13 Malone IB , Cash D , Ridgway GR , et al. MIRIAD—Public release of a multiple time point Alzheimer's MR imaging dataset[J]. Neuroimage, 2013, 70: 33- 36.
doi: 10.1016/j.neuroimage.2012.12.044
14 Ellis KA , Rowe CC , Villemagne VL , et al. Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative[J]. Alzheimers Dement, 2010, 6 (3): 291- 296.
doi: 10.1016/j.jalz.2010.03.009
15 Glahn DC , Thompson PM , Blangero J . Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function[J]. Human Brain Mapping, 2007, 28 (6): 488- 501.
doi: 10.1002/hbm.20401
16 Buckner RL . Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate[J]. Neuron, 2004, 44 (1): 195- 208.
doi: 10.1016/j.neuron.2004.09.006
17 Klöppel S , Stonnington CM , Chu C , et al. Automatic classification of MR scans in Alzheimer's disease[J]. Brain, 2008, 131 (3): 681- 689.
doi: 10.1093/brain/awm319
18 Li S , Yuan X , Pu F , et al. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients[J]. J Neurosci, 2014, 34 (32): 10541- 10553.
doi: 10.1523/JNEUROSCI.4356-13.2014
19 Möller C , Pijnenburg YAL , van der Flier WM , et al. Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis[J]. Radiology, 2015, 279 (3): 838- 848.
20 Liu X , Tosun D , Weiner MW , et al. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification[J]. Neuroimage, 2013, 83: 148- 157.
doi: 10.1016/j.neuroimage.2013.06.033
21 Salvatore C , Cerasa A , Battista P , et al. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach[J]. Front Neurosci, 2015, 9: 307.
doi: 10.3389/fnins.2015.00307
22 Magnin B , Mesrob L , Kinkingnéhun S , et al. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI[J]. Neuroradiology, 2009, 51 (2): 73- 83.
23 Zhu X , Suk HI , Wang L , et al. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis[J]. Medical Image Anal, 2017, 38: 205- 214.
doi: 10.1016/j.media.2015.10.008
24 Long Z , Huang J , Li B , et al. A comparative atlas-based recognition of mild cognitive impairment with voxel-based morphometry[J]. Front Neurosci, 2018, 12: 916.
doi: 10.3389/fnins.2018.00916
25 Liu M , Zhang D , Shen D , et al. Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis[J]. Human Brain Mapping, 2014, 35 (4): 1305- 1319.
doi: 10.1002/hbm.22254
26 Tong T , Wolz R , Gao Q , et al. Multiple instance learning for classification of dementia in brain MRI[J]. Med Image Anal, 2014, 18 (5): 808- 818.
doi: 10.1016/j.media.2014.04.006
27 Zhang J , Gao Y , Gao Y , et al. Detecting anatomical landmarks for fast Alzheimer's disease diagnosis[J]. IEEE T Med Imaging, 2016, 35 (12): 2524- 2533.
doi: 10.1109/TMI.2016.2582386
28 Tanveer M , Richhariya B , Khan RU , et al. Machine learning techniques for the diagnosis of Alzheimer's disease: a review[J]. ACM T Multim Comput, 2019, 16 (1): 35.
29 Sanzarigita EJ , Schoonheim MM , Damoiseaux JS , et al. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity[J]. PLoS One, 2010, 5 (11): e13788.
doi: 10.1371/journal.pone.0013788
30 Karwowski W , Vasheghani Farahani F , Lighthall N . Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review[J]. Front Neurosci, 2019, 13: 585.
doi: 10.3389/fnins.2019.00585
31 Chen G , Ward BD , Xie C , et al. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J]. Radiology, 2011, 259 (1): 213- 221.
32 Wang Z , Zheng Y , Zhu DC , et al. Classification of Alzheimer's disease, mild cognitive impairment and normal control subjects using resting-state fMRI Based network Connectivity analysis[J]. IEEE J Transl Eng Health Med, 2018, 6: 1801009.
doi: 10.1109/JTEHM.2018.2874887
33 Jie B , Zhang D , Gao W , et al. Integration of network topological and connectivity properties for neuroimaging classification[J]. IEEE Trans Biomed Eng, 2013, 61 (2): 576- 589.
34 Tong T , Gray KR , Gao Q , et al. Multi-modal classification of Alzheimer's disease using nonlinear graph fusion[J]. Pattern Recognit, 2017, 171- 181.
35 Lian C , Liu M , Zhang J , et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE T Pattern Anal, 2020, 42 (4): 880- 893.
doi: 10.1109/TPAMI.2018.2889096
36 Shi Y , Suk H , Gao Y , et al. Leveraging coupled interaction for multimodal Alzheimer's disease diagnosis[J]. IEEE T Neural Network, 2020, 31 (1): 186- 200.
37 Kohannim O , Hua X , Hibar DP , et al. Boosting power for clinical trials using classifiers based on multiple biomarkers[J]. Neurobiol Aging, 2010, 31 (8): 1429- 1442.
doi: 10.1016/j.neurobiolaging.2010.04.022
38 Walhovd KB , Fjell AM , Brewer JB , et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease[J]. Am J Neuroradiol, 2010, 31 (2): 347- 354.
doi: 10.3174/ajnr.A1809
39 Westman E , Muehlboeck J , Simmons A , et al. Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion[J]. Neuroimage, 2012, 62 (1): 229- 238.
doi: 10.1016/j.neuroimage.2012.04.056
40 Zhang D , Wang Y , Zhou L , et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage, 2011, 55 (3): 856- 867.
doi: 10.1016/j.neuroimage.2011.01.008
41 Suk H , Shen D . Subclass-based multi-task learning for Alzheimer's disease diagnosis[J]. Front Aging Neurosci, 2014, 6: 168- 168.
doi: 10.3389/fnagi.2014.00168
42 Suk H , Lee S , Shen D , et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J]. Neuroimage, 2014, 101: 569- 582.
doi: 10.1016/j.neuroimage.2014.06.077
43 Jie B , Liu M , Zhang D , et al. Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis[J]. IEEE Trans Image Process, 2018, 27 (5): 2340- 2353.
doi: 10.1109/TIP.2018.2799706
44 Liu J , Wang J , Tang Z , et al. Improving Alzheimer's disease classification by combining multiple measures[J]. IEEE/ACM Trans Comput Biol Bioinf, 2018, 15 (5): 1649- 1659.
doi: 10.1109/TCBB.2017.2731849
45 Hinrichs C , Singh V , Xu G , et al. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population[J]. Neuroimage, 2011, 55 (2): 574- 589.
doi: 10.1016/j.neuroimage.2010.10.081
46 Kim J , Lee B . Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Hum Brain Mapp, 2018, 39 (9): 3728- 3741.
doi: 10.1002/hbm.24207
47 Zhang W , Luo T , Qiu S , et al. Identifying genetic risk factors for Alzheimer's disease via shared tree-guided feature learning across multiple tasks[J]. IEEE Trans Knowl Data Eng, 2018, 30 (11): 2145- 2156.
48 Xu J, Deng C, Gao X, et al. Predicting Alzheimer's disease cognitive assessment via robust low-rank structured sparse model[C]. IJCAI(US), 2017: 3880-3886.
49 Zhu X , Suk H , Lee S , et al. Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification[J]. IEEE Trans Biomed Eng, 2016, 63 (3): 607- 618.
doi: 10.1109/TBME.2015.2466616
50 Ye T , Zu C , Jie B , et al. Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease[J]. Brain Imaging Behav, 2016, 10 (3): 739- 749.
doi: 10.1007/s11682-015-9437-x
51 Cao P , Liu X , Liu H , et al. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease[J]. Comput Meth Prog Bio, 2018, 162: 19- 45.
doi: 10.1016/j.cmpb.2018.04.028
52 Zhou T , Thung K , Liu M , et al. Brain-Wide genome-wide association study for Alzheimer's disease via joint projection learning and sparse regression model[J]. IEEE Trans Biomed Eng, 2019, 66 (1): 165- 175.
doi: 10.1109/TBME.2018.2824725
53 Wang M , Zhang D , Shen D , et al. Multi-task exclusive relationship learning for Alzheimer's disease progression prediction with longitudinal data[J]. Med Image Anal, 2019, 53: 111- 122.
doi: 10.1016/j.media.2019.01.007
54 Liu M , Zhang J , Adeli E , et al. Joint classification and regression via deep multi-Task multi-Channel learning for Alzheimer's disease diagnosis[J]. IEEE Trans Biomedi Eng, 2019, 66 (5): 1195- 1206.
doi: 10.1109/TBME.2018.2869989
55 Liu M , Zhang D , Shen D , et al. Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment[J]. IEEE Trans Medi Imaging, 2016, 35 (6): 1463- 1474.
doi: 10.1109/TMI.2016.2515021
56 Li W , Zhang L , Qiao L , et al. Towards a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view[J]. IEEE J Biomed Health Inform, 2019, 24 (4): 1160- 1168.
57 Cheng B , Liu M , Shen D , et al. Multi-domain transfer learning for early diagnosis of Alzheimer's disease[J]. Neuroinf, 2017, 15 (2): 115- 132.
doi: 10.1007/s12021-016-9318-5
58 Cheng B , Liu M , Suk H , et al. Multimodal manifold-regularized transfer learning for MCI conversion prediction[J]. Brain Imaging Behav, 2015, 9 (4): 913- 926.
doi: 10.1007/s11682-015-9356-x
59 Cheng B , Liu M , Zhang D , et al. Domain transfer learning for MCI conversion prediction[J]. IEEE Trans Biomed Eng, 2015, 62 (7): 1805- 1817.
doi: 10.1109/TBME.2015.2404809
60 Filipovych R , Davatzikos C . Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)[J]. Neuroimage, 2011, 55 (3): 1109- 1119.
doi: 10.1016/j.neuroimage.2010.12.066
[1] YU Xinguang, ZHANG Yanyang. Advances on the treatment of Alzheimers disease with deep brain stimulation [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .