Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 22-27,33.doi: 10.6040/j.issn.1671-7554.0.2020.0399

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

Advances on the treatment of Alzheimer's disease with deep brain stimulation

Xinguang YU*(),Yanyang ZHANG   

  1. Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • Received:2020-03-20 Online:2020-08-07 Published:2020-08-07
  • Contact: Xinguang YU E-mail:yuxinguang_301@163.com

Abstract:

Alzheimer's disease (AD) has been increasingly considered as a large-scale network disconnection syndrome. Currently, AD remains unchecked, and the economic burden on society is huge. Deep brain stimulation (DBS) engaging circuits and networks in the brain of AD patients is proved potentially therapeutic, but still in the infant stage. This article reviews the indications, stimulation targets and parameters, mechanism and future trends of DBS in the treatment of AD.

Key words: Alzheimer's Disease, Deep brain stimulation, Brain network, Neuroimaging

CLC Number: 

  • R741
1 Querfurth HW , LaFerla FM . Alzheimer's disease[J]. N Engl J Med, 2010, 362 (4): 329- 344.
doi: 10.1056/NEJMra0909142
2 GBD 2016 Dementia Collaborators . Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18 (1): 88- 106.
doi: 10.1016/S1474-4422(18)30403-4
3 张建国. 脑深部电刺激治疗阿尔茨海默病的现状和进展[J]. 中华神经创伤外科电子杂志, 2018, 4 (6): 379- 381.
ZHANG Jianguo . Status and prospect of deep brain stimulation for the treatment of Alzheimer's disease[J]. Chinese Journal of Neurotraumatic Surgery, 2018, 4 (6): 379- 381.
4 Long JM , Holtzman DM . Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179 (2): 312- 339.
5 Schneider L . A resurrection of aducanumab for Alzheimer's disease[J]. Lancet Neurol, 2020, 19 (2): 111- 112.
doi: 10.1016/S1474-4422(19)30480-6
6 余新光, 张艳阳. 神经外科参与脑科学研究的机遇与挑战[J]. 中国现代神经疾病杂志, 2019, 19 (12): 915- 919.
YU Xinguang , ZHANG Yanyang . Opportunities and challenges for neurosurgeon in the brain-research era[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2019, 19 (12): 915- 919.
7 Poo MM , Du JL , Ip NY , et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92 (3): 591- 596.
doi: 10.1016/j.neuron.2016.10.050
8 张艳阳, 余新光. 人脑连接组学在神经外科中的应用进展[J]. 中国医学影像学杂志, 2017, 25 (10): 789- 793.
ZHANG Yanyang , YU Xinguang . Connectomics: a new paradigm for understanding brain disease in neurosurgery[J]. Chinese Journal of Medical Imaging, 2017, 25 (10): 789- 793.
9 Jagust W . Imaging the evolution and pathophysiology of Alzheimer disease[J]. Nat Rev Neurosci, 2018, 19 (11): 687- 700.
doi: 10.1038/s41583-018-0067-3
10 Okun MS . Deep-brain stimulation-entering the era of human neural-network modulation[J]. N Engl J Med, 2014, 371 (15): 1369- 1373.
doi: 10.1056/NEJMp1408779
11 Laxton AW , Tang-Wai DF , McAndrews MP , et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease[J]. Ann Neurol, 2010, 68 (4): 521- 534.
doi: 10.1002/ana.22089
12 Smith GS , Laxton AW , Tang-Wai DF , et al. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease[J]. Arch Neurol, 2012, 69 (9): 1141- 1148.
13 Kuhn J , Hardenacke K , Lenartz D , et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer's dementia[J]. Mol Psychiatry, 2015, 20 (3): 353- 360.
doi: 10.1038/mp.2014.32
14 Sharma M , Deogaonkar M , Rezai A . Assessment of potential targets for deep brain stimulation in patients with Alzheimer's disease[J]. J Clin Med Res, 2015, 7 (7): 501- 505.
doi: 10.14740/jocmr2127w
15 Khan IS , D'Agostino EN , Calnan DR , et al. Deep brain stimulation for memory modulation: a new frontier[J]. World Neurosurg, 2019, 126: 638- 646.
doi: 10.1016/j.wneu.2018.12.184
16 Gratwicke J , Kahan J , Zrinzo L , et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia?[J]. Neurosci Biobehav Rev, 2013, 37 (10 Pt 2): 2676- 2688.
17 Koulousakis P , Andrade P , Visser-Vandewalle V , et al. The nucleus basalis of meynert and its role in deep brain stimulation for cognitive disorders: a historical perspective[J]. J Alzheimers Dis, 2019, 69 (4): 905- 919.
doi: 10.3233/JAD-180133
18 Turnbull IM , McGeer PL , Beattie L , et al. Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer's type: a preliminary report[J]. Appl Neurophysiol, 1985, 48 (1-6): 216- 221.
19 Dougherty DD , Rezai AR , Carpenter LL , et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression[J]. Biol Psychiatry, 2015, 78 (4): 240- 248.
doi: 10.1016/j.biopsych.2014.11.023
20 Scharre DW , Weichart E , Nielson D , et al. Deep brain stimulation of frontal lobe networks to treat Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62 (2): 621- 633.
doi: 10.3233/JAD-170082
21 Deeb W , Salvato B , Almeida L , et al. Fornix-region deep brain stimulation-induced memory flashbacks in Alzheimer's disease[J]. N Engl J Med, 2019, 381 (8): 783- 785.
doi: 10.1056/NEJMc1905240
22 Hamani C , McAndrews MP , Cohn M , et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation[J]. Ann Neurol, 2008, 63 (1): 119- 123.
doi: 10.1002/ana.21295
23 Ponce FA , Asaad WF , Foote KD , et al. Bilateral deep brain stimulation of the fornix for Alzheimer's disease: surgical safety in the ADvance trial[J]. J Neurosurg, 2016, 125 (1): 75- 84.
doi: 10.3171/2015.6.JNS15716
24 Mao ZQ , Wang X , Xu X , et al. Partial improvement in performance of patients with severe Alzheimer's disease at an early stage of fornix deep brain stimulation[J]. Neural Regen Res, 2018, 13 (12): 2164- 2172.
doi: 10.4103/1673-5374.241468
25 Senova S , Chaillet A , Lozano AM . Fornical closed-loop stimulation for Alzheimer's disease[J]. Trends Neurosci, 2018, 41 (7): 418- 428.
doi: 10.1016/j.tins.2018.03.015
26 Aldehri M , Temel Y , Alnaami I , et al. Deep brain stimulation for Alzheimer's disease: an update[J]. Surg Neurol Int, 2018, 9: 58.
doi: 10.4103/sni.sni_342_17
27 Buckner RL , Snyder AZ , Shannon BJ , et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory[J]. J Neurosci, 2005, 25 (34): 7709- 7717.
doi: 10.1523/JNEUROSCI.2177-05.2005
28 Sankar T , Chakravarty MM , Bescos A , et al. Deep brain stimulation influences brain structure in Alzheimer's disease[J]. Brain Stimul, 2015, 8 (3): 645- 654.
29 凌至培, 毛之奇, 潘隆盛, 等. 脑深部电刺激术治疗痴呆的初步临床结果[J]. 中华神经医学杂志, 2017, 16 (1): 55- 59.
LING Zhipei , MAO Zhiqi , PAN Longsheng , et al. Deep brain stimulation therapy for patients with severe dementia[J]. Chinese Journal of Neuromedicine, 2017, 16 (1): 55- 59.
30 Supekar K , Menon V , Rubin D , et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease[J]. PLoS Comput Biol, 2008, 4 (6): e1000100.
doi: 10.1371/journal.pcbi.1000100
31 Buckner RL , Sepulcre J , Talukdar T , et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease[J]. J Neurosci, 2009, 29 (6): 1860- 1873.
doi: 10.1523/JNEUROSCI.5062-08.2009
32 He Y , Chen Z , Evans A . Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease[J]. J Neurosci, 2008, 28 (18): 4756- 4766.
doi: 10.1523/JNEUROSCI.0141-08.2008
33 Lo CY , Wang PN , Chou KH , et al. Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease[J]. J Neurosci, 2010, 30 (50): 16876- 16885.
doi: 10.1523/JNEUROSCI.4136-10.2010
34 Gondard E , Chau HN , Mann A , et al. Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix[J]. Brain Stimul, 2015, 8 (6): 1058- 1064.
doi: 10.1016/j.brs.2015.07.044
35 Fox MD , Buckner RL , Liu H , et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases[J]. Proc Natl Acad Sci USA, 2014, 111 (41): E4367- 4375.
doi: 10.1073/pnas.1405003111
36 Via a J , Vickers JC , Cook MJ , et al. Currents of memory: recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer's disease[J]. Neurobiol Aging, 2017, 56: 202- 210.
doi: 10.1016/j.neurobiolaging.2017.03.001
37 Hescham S , Jahanshahi A , Schweimer JV , et al. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus[J]. Brain Struct Funct, 2016, 221 (8): 4281- 4286.
doi: 10.1007/s00429-015-1144-2
38 Sarah Hescham , Yasin Temel , Sandra Schipper , et al. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis[J]. Brain Struct Funct, 2017, 222 (2): 1069- 1075.
39 Elise Gondard , Hien N Chau , Amandeep Mann , et al. Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix[J]. Brain Stimul Nov-Dec, 2015, 8 (6): 1058- 1064.
doi: 10.1016/j.brs.2015.07.044
40 Aurelie Leplus , Inger Lauritzen , Christophe Melon . Chronic fornix deep brain stimulation in a transgenic Alzheimer's rat model reduces amyloid burden, inflammation, and neuronal loss[J]. Brain Struct Funct, 2019, 224 (1): 363- 372.
41 Huang C , Chu H , Ma Y , et al. The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer's disease[J]. Brain Stimul, 2019, 12 (1): 161- 174.
doi: 10.1016/j.brs.2018.08.015
[1] Jizong ZHAO. Neurosurgery plays a key role in brain science research [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 1-4.
[2] Yilong YIN,Xiaoming XI,Xianjing MENG. Intelligent diagnosis methods of Alzheimer's disease [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 14-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .