您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (10): 13-19.doi: 10.6040/j.issn.1671-7554.0.2020.0891

• "新冠肺炎流行时空动态、风险评估与应急管理"专题 • 上一篇    下一篇

地理信息系统在新型冠状病毒肺炎疫情防控中的应用进展述评

李秀君1,*(),李新楼2,刘昆3,赵晓波2,马盟4,孙博2   

  1. 1. 山东大学齐鲁医学院公共卫生学院生物统计学系, 山东 济南 250012
    2. 中国人民解放军战略支援部队特色医学中心医研部, 国家环境保护环境感官应激与健康重点实验室, 北京 100101
    3. 空军军医大学军事预防医学系军队防疫与流行病学教研室, 特殊作业环境危害评估与防治教育部重点实验室, 陕西 西安 710032
    4. 中国人民解放军32022部队, 湖北 武汉 430072
  • 收稿日期:2020-05-31 出版日期:2020-10-01 发布日期:2020-10-08
  • 通讯作者: 李秀君 E-mail:xjli@sdu.edu.cn
  • 作者简介:李秀君,山东大学公共卫生学院生物统计学系教授,博士研究生导师,瑞士伯尔尼大学数理统计研究所访问学者,中国人民解放军军事医学科学院微生物流行病研究所、国家重点实验室、公共卫生领域空间信息技术应用研究中心博士后。现任中华医学会结核病学分会临床流行病与循证医学专业委员会副主委,国际生物统计学会中国分会IBS-CHINA理事,中国统计教育协会生物医学统计研究会和中国医药教育协会医药统计专业委员会委员。主要研究方向为空间信息技术(GIS)在流行病与卫生统计学方法中的应用,传染病流行病学,气候变化与健康等。先后主持国家自然基金,科技部重点研发计划子课题,省重点发展计划,省自然基金等多项科研课题,发表论文60余篇,其中SCI收录30余篇
  • 基金资助:
    山东大学新冠肺炎应急攻关科研专项(2020XGC01);病原微生物生物安全国家重点实验室开放研究基金(SKLPBS1525);中国科学院资源与环境信息系统国家重点实验室开放研究基金资助项目和国家环境保护环境感官应激与健康重点实验室开放基金(19ZX83)

Application of geographic information system in the control of COVID-19 epidemic

Xiujun LI1,*(),Xinlou LI2,Kun LIU3,Xiaobo ZHAO2,Meng MA4,Bo SUN2   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
    2. Department of Medical Research, PLA Stragetic Support Force Characteristic Medical Center, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental Protection, Beijing 100101, China
    3. Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an 710032, Shaanxi, China
    4. The 32022 Force of PLA, Wuhan 430072, Hubei, China
  • Received:2020-05-31 Online:2020-10-01 Published:2020-10-08
  • Contact: Xiujun LI E-mail:xjli@sdu.edu.cn

摘要:

新型冠状病毒肺炎(简称新冠肺炎)疫情发生以来,地理信息系统等空间信息技术在描述新冠肺炎疫情流行分布状况、地域传播特征、不同区域疫情风险等级和早期预测预警等方面提供了大量的技术手段和应用实例,从而为科学防控和精准施策奠定了基础。本文结合地理信息系统技术方法在新冠肺炎疫情防控中的应用现状进行述评,为进一步提升防控水平提供参考,指导实施更加精准的疫情防控措施。

关键词: 新型冠状病毒肺炎, 地理信息系统, 空间分析, 风险评估

Abstract:

Since the outbreak of coronavirus disease 2019 (COVID-19) epidemic, the geographic information system (GIS) has played an important role in explaining the epidemic distribution, characteristics of regional transmission, risk assessment, and early prediction and warning, which greatly helped the disease control and prevention. In this study, the application of GIS in COVID-19 prevention and control was reviewed, hoping to provide reference for future improvement in the prevention and control measures.

Key words: Coronavirus disease 2019, Geographic information system, Spatial analysis, Risk assessment

中图分类号: 

  • R181.3
1 陈述彭, 鲁学军, 周成虎. 地理信息系统导论[M]. 北京: 科学出版社, 1999.
2 李建松. 地理信息系统原理[M]. 武汉: 武汉大学出版社, 2006.
3 白尧, 刘昆, 谷旭, 等. 陕西省2009-2013年手足口病疫情时空流行特征分析[J]. 中华流行病学杂志, 2018, 39 (9): 1152- 1158.
BAI Yao , LIU Kun , GU Xu , et al. Analysis on the spatial-temporal characteristics of hand-foot-mouth disease in Shaanxi province, 2009-2013[J]. Chinese Journal of Epidemiology, 2018, 39 (9): 1152- 1158.
4 Fang LQ , Li XL , Liu K , et al. Mapping spread and risk of avian influenza A (H7N9) in China[J]. Sci Rep, 2013, 3: 2722.
doi: 10.1038/srep02722
5 Fang LQ , de Vlas SJ , Feng D , et al. Geographical spread of SARS in mainland China[J]. Trop Med Int Health, 2009, 14 (s1): 14- 20.
6 刘昆, 李新楼, 邵中军. 空间流行病学在疾病预防控制工作中发挥着重要作用[J]. 中华流行病学杂志, 2018, 39 (9): 1143- 1145.
LIU Kun , LI Xinlou , SHAO Zhongjun . Spatial epidemiology plays an important role in control and prevention of diseases[J]. Chinese Journal of Epidemiology, 2018, 39 (9): 1143- 1145.
7 汤诚, 朱帅, 陈肖肖, 等. 1990-2014年徐州地区布加综合征空间分布特征和空间自相关分析研究[J]. 中国全科医学, 2019, 22 (33): 4142- 4146.
TANG Cheng , ZHU Shuai , CHEN Xiaoxiao , et al. Spatial Distribution Characteristics and Spatial Autocorrelation Analysis of Budd-Chiari Syndrome in Xuzhou City from 1990 to 2014[J]. Chinese General Practice, 2019, 22 (33): 4142- 4146.
8 Liu L , Zhao X , Yin F , et al. Spatio-temporal clustering of hand, foot and mouth disease at the county level in Sichuan province, China, 2008-2013[J]. Epidemiol Infect, 2015, 143 (4): 831- 838.
doi: 10.1017/S0950268814001587
9 Li R , Cheng S , Luo C , et al. Epidemiological Characteristics and Spatial-Temporal Clusters of Mumps in Shandong Province, China, 2005-2014[J]. Sci Rep, 2017, 7: 46328.
doi: 10.1038/srep46328
10 Gui J , Liu Z , Zhang T , et al. Epidemiological Characteristics and Spatial-Temporal Clusters of Hand, Foot, and Mouth Disease in Zhejiang Province, China, 2008-2012[J]. PLoS One, 2015, 10 (9): e139109.
doi: 10.1371/journal.pone.0139109.eCollection2015
11 Samphutthanon R , Tripathi N , Ninsawat S , et al. Spatio-Temporal Distribution and Hotspots of Hand, Foot and Mouth Disease (HFMD) in Northern Thailand[J]. International Journal of Environmental Research and Public Health, 2014, 11 (1): 312- 336.
12 Q Li , X Guan , P Wu , et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia[J]. N Engl J Med, 2020, 382 (13): 1199- 1207.
doi: 10.1056/NEJMoa2001316
13 Pan A , Liu L , Wang C , et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China[J]. JAMA, 2020, 323 (19): 1915- 1923.
doi: 10.1001/jama.2020.6130
14 Wu JT , Leung K , Leung GM . Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China:a modelling study[J]. Lancet, 2020, 395 (10225): 689- 697.
doi: 10.1016/S0140-6736(20)30260-9
15 丁克琴,彭志行,鲍昌俊,等. GIS及空间分析技术在传染病流行病学中的应用[C]//华东地区第十次流行病学学术会议暨华东地区流行病学学术会议20周年庆典论文汇编. 2010.
16 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组.新型冠状病毒肺炎流行病学特征分析[J].中华流行病学杂志, 2020, 41(2): 145-151.
Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China[J]. Chinese Journal of Epidemiology, 2020, 41(2): 145-151.
17 苏理云, 郭雯. 中国各省新型冠状病毒肺炎累计确诊人数的空间聚集及时空格局演变分析[J]. 重庆理工大学学报(自然科学版), 2020, 34 (4): 51- 58, 65.
SU Liyun , GUO Wen . Spatial Aggregation and Spatial-Temporal Pattern of Provincial Cumulative Confirmed Count of Novel Coronavirus Pneumonia (COVID-19) in China[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34 (4): 51- 58, 65.
18 Yang W , Deng M , Li C , et al. Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China[J]. Int J Environ Res Public Health, 2020, 17 (7): 2563.
doi: 10.3390/ijerph17072563
19 Fan J , Liu X , Pan W , et al. Epidemiology of Coronavirus Disease in Gansu Province, China, 2020[J]. Emerg Infect Dis, 2020, 26 (6): 1257- 1265.
doi: 10.3201/eid2606.200251
20 国家卫生健康委员会和各省卫生健康委员会.新型冠状病毒肺炎疫情分布[EB/OL]. (2020-01-26)[2020-07-01]. http://2019ncov.chinacdc.cn.
21 Desjardins MR , Hohl A , Delmelle EM . Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic:Detecting and evaluating emerging clusters[J]. Appl Geogr, 2020, 118: 102202.
doi: 10.1016/j.apgeog.2020.102202
22 Lakhani A . Which Melbourne Metropolitan Areas Are Vulnerable to COVID-19 Based on Age, Disability, and Access to Health Services? Using Spatial Analysis to Identify Service Gaps and Inform Delivery[J]. J Pain Symptom Manage, 2020, 60 (1): e41- e44.
doi: 10.1016/j.jpainsymman.2020.03.041
23 Hart OE , Halden RU . Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally:Feasibility, economy, opportunities and challenges[J]. Sci Total Environ, 2020, 730: 138875.
doi: 10.1016/j.scitotenv.2020.138875
24 Kamel Boulos MN , Geraghty EM . Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) epidemic and associated events around the world:how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics[J]. Int J Health Geogr, 2020, 19 (1): 8.
doi: 10.1186/s12942-020-00202-8
25 环球网.意大利政府推出新冠肺炎患者密切接触者追踪手机App[ER/OL].(2020-04-17)[2020-05-07]. https://www.sohu.com/a/388833094_162522.
26 Ogen Y . Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality[J]. Sci Total Environ, 2020, 726: 138605. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality[J]. Sci Total Environ, 2020, 726:138605. doi:https://doi.org/10.1016/j.scitotenv.2020.138605.
doi: 10.1016/j.scitotenv.2020.138605
27 Liu K , Ai S , Song S , et al. Population movement, city closure in Wuhan and geographical expansion of the 2019-nCoV pneumonia infection in China in January 2020[J]. Clin Infect Dis, 2020, 17: ciaa 422.
doi: 10.1093/cid/ciaa422
28 Fan C , Liu L , Guo W , et al. Prediction of epidemic spread of the 2019 novel coronavirus driven by spring festival transportation in China:a population-based study[J]. Int J Environ Res Public Health, 2020, 17 (5): 1679.
doi: 10.3390/ijerph17051679
29 Guliyev H . Determining the spatial effects of COVID-19 using the spatial panel data model[J]. Spat Stat, 2020, 38: 100443.
doi: 10.1016/j.spasta.2020.100443
30 Mollalo A , Vahedi B , Rivera KM . GIS-based spatial modeling of COVID-19 incidence rate in the continental United States[J]. Sci Total Environ, 2020, 728: 138884.
doi: 10.1016/j.scitotenv.2020.138884
31 Chan JF , Yuan S , Kok KH , et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission:a study of a family cluster[J]. Lancet, 2020, 395 (10223): 514- 523.
doi: 10.1016/S0140-6736(20)30154-9
32 Yu P , Zhu J , Zhang Z , et al. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period[J]. J Infect Dis, 2020, 221 (11): 1757- 1761.
doi: 10.1093/infdis/jiaa077
33 胡建雄, 何冠豪, 刘涛, 等. 新型冠状病毒肺炎疫情初期湖北省输出风险评估[J]. 中华预防医学杂志, 2020, 54 (4): 362- 366.
HU Jianxiong , HE Guanhao , LIU Tao , et al. Risk assessment of exported risk of novel coronavirus pneumonia from Hubei Province[J]. Chinese Journal of Preventive Medicine, 2020, 54 (4): 362- 366.
34 Chen ZL , Zhang Q , Lu Y , et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China[J]. Chin Med J (Engl), 2020, 133 (9): 1044- 1050.
doi: 10.1097/CM9.0000000000000782
35 城市象限.哪些城市的新型肺炎疫情可能被低估|人流迁徙大数据+SARS传播路径[ER/OL]. (2020-01-22)[2020-05-07]. http://www.cbdio.com/BigData/2020-01/22/content_6154294.htm.
36 澎湃新闻.疫情之下,数据的100种表达[ER/OL]. (2020-03-26)[2020-05-07]. https://tech.sina.com.cn/roll/2020-03-26/doc-iimxyqwa3236669.shtml.
37 四川省人民政府.图解:四川根据疫情状况划分四类地区实施分区分类防控[ER/OL]. (2020-02-06)[2020-05-07]. http://www.sc.gov.cn/10462/10464/13298/13300/2020/2/6/af308a1364b541f796c3623786607187.shtml.
38 科技日报.抗疫战场上,大数据与病毒的殊死较量[ER/OL]. (2020-02-17)[2020-05-07]. https://tech.gmw.cn/2020-02/17/content_33561059.htm.
39 Zhao S , Zhuang Z , Ran J , et al. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020:A data-driven correlational report[J]. Travel Medicine and Infectious Disease, 2020, 33: 101568.
doi: 10.1016/j.tmaid.2020.101568
40 第一财经.离开武汉的500多万人都去了哪里?大数据告诉你[ER/OL]. (2020-01-26)[2020-05-07]. https://m.yicai.com/news/100481655.html?from=timeline&isappinstalled=0.
41 刘勇, 杨东阳, 董冠鹏, 等. 河南省新冠肺炎疫情时空扩散特征与人口流动风险评估——基于1243例病例报告的分析[J]. 经济地理, 2020, 40 (3): 24- 32.
LIU Yong , YANG Dongyong , DONG Guanpeng , et al. The spatio-temporal spread characteristics of 2019 novel coronavirus pneumonia and risk assessment based on population movement in henan province:analysis of 1243 individual case reports[J]. Economic Geography, 2020, 40 (3): 24- 32.
42 深圳特区报.深圳科研力量联合研发"黑科技" 50米内遇高危对象可报警[ER/OL]. (2020-03-03)[2020-05-07]. http://sz.people.com.cn/n2/2020/0303/c202846-33844806.html.
43 中国科学院地理科学与资源研究所.地理科学与资源研究所积极开展新型冠状病毒肺炎疫情防控及科技支撑工作[ER/OL]. (2020-02-13)[2020-05-07]. http://www.igsnrr.ac.cn/xwzx/zhxw/202002/t20200213_5499634.html.
44 Kraemer MUG , Yang CH , Gutierrez B , et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020, 368 (6490): 493- 497.
doi: 10.1126/science.abb4218
45 冯明翔,方志祥,路雄博,等.交通分析区尺度上的新型冠状病毒肺炎时空扩散推估方法:以武汉市为例[J/OL].武汉大学学报(信息科学版), 2020. 1-12[2020-04-20]. http://kns.cnki.net/kcms/detail/42.1676.TN.20200420.1449.001.html.
46 Han X , Wang J , Zhang M , et al. Using Social Media to Mine and Analyze Public Opinion Related to COVID-19 in China[J]. Int J Environ Res Public Health, 2020, 17 (8): 2788.
doi: 10.3390/ijerph17082788
47 陈兴蜀, 常天祐, 王海舟, 等. 基于微博数据的"新冠肺炎疫情"舆情演化时空分析[J]. 四川大学学报(自然科学版), 2020, 57 (2): 409- 416.
CHEN Xingshu , CHANG Tianyou , WANG Haizhou , et al. Spatial and temporal analysis on public opinion evolution of epidemic situation about novel coronavirus pneumonia based on micro-blog data[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57 (2): 409- 416.
48 中科曙光.曙光云舆情分析平台发布!已通过可信云服务评估[ER/OL]. (2020-03-13)[2020-05-06]. https://www.sohu.com/a/379740076_134219.
49 Zhang H , Yang L , Li L , et al. The epidemic characteristics and spatial autocorrelation analysis of hand, foot and mouth disease from 2010 to 2015 in Shantou, Guangdong, China[J]. BMC Public Health, 2019, 19 (1): 998.
doi: 10.1186/s12889-019-7329-5
50 Xu C , Zhang X , Xiao G . Spatiotemporal decomposition and risk determinants of hand, foot and mouth disease in Henan, China[J]. Science of The Total Environment, 2019, 657: 509- 516.
doi: 10.1016/j.scitotenv.2018.12.039
51 Zhao F , Cheng S , He G , et al. Space-time clustering characteristics of tuberculosis in China, 2005-2011[J]. PLoS One, 2013, 8 (12): e83605.
doi: 10.1371/journal.pone.0083605
52 Dieng S , Ba EH , Cissé B , et al. Spatio-temporal variation of malaria hotspots in Central Senegal, 2008-2012[J]. BMC Infectious Diseases, 2020, 20 (1): 424.
doi: 10.21203/rs.2.11659/v2
53 Li J , Kolivras KN , Hong Y , et al. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia[J]. The American Journal of Tropical Medicine and Hygiene, 2014, 91 (6): 1166- 1172.
doi: 10.4269/ajtmh.13-0733
54 孙利谦, 夏聪聪, 李锐, 等. 基于空间点模式分析全球高致病性禽流感H5N1的空间分布特征[J]. 中华疾病控制杂志, 2016, 20 (6): 555- 558, 563.
SUN Liqian , XIA Congcong , LI Rui , et al. Spatial distribution characteristics of global highly pathogenic avian influenza H5N1 based on the spatial point pattern analysis[J]. Chinese Journal of Disease Control & Prevention, 2016, 20 (6): 555- 558, 563.
55 徐继承, 黄水平, 肖伟伟, 等. 中国大陆地区438例人感染H7N9禽流感空间聚集性分析[J]. 中华流行病学杂志, 2014, 35 (11): 1270- 1274.
XU Jicheng , HUANG Shuiping , XIAO Weiwei , et al. Spatial aggregation of 438 human infections with avian influenza A (H7N9) in the mainland of China[J]. Chinese Journal of Epidemiology, 2014, 35 (11): 1270- 1274.
[1] 牛占丛,王彦霞,王晓亚,王晓庆,李亚轻,边竞. 新型冠状病毒肺炎2例报告[J]. 山东大学学报 (医学版), 2020, 58(10): 134-136.
[2] 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81.
[3] 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73.
[4] 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59.
[5] 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52.
[6] 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43.
[7] 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37.
[8] 金新叶,卢珍珍,丁中兴,陈峰,彭志行. 武汉交通管制和集中隔离对新型冠状病毒肺炎疫情影响的动力学模型研究[J]. 山东大学学报 (医学版), 2020, 58(10): 25-31.
[9] 徐丽君,刘文辉,刘远,李美霞,罗雷,欧春泉. SEIQCR传染病模型的构建及在广州市新型冠状病毒肺炎公共卫生防控效果评估中的应用[J]. 山东大学学报 (医学版), 2020, 58(10): 20-24.
[10] 刘利利,贾艳,齐畅,朱雨辰,李春雨,佘凯丽,刘廷轩,李秀君. 基于时空统计方法分析温州市2020年1~3月新型冠状病毒肺炎的聚集性分布[J]. 山东大学学报 (医学版), 2020, 58(10): 82-88.
[11] 张辉, 宋姝璇, 刘继锋, 贺真, 邵中军, 刘昆. 西安市新型冠状病毒肺炎疫情分析[J]. 山东大学学报 (医学版), 2020, 58(10): 89-94.
[12] 白尧,陈志军,宋姝璇,贺真,陈保忠,邵中军,刘昆. 西安市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 95-99.
[13] 王玲,曹海霞,张玲,张文娜,潘艳萍,史颖,张伟,崔峰. 淄博市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 100-104.
[14] 王彬,布学慧,孔祥亘,张照华,吴谙诏,肖迪,蒋雪梅. 成人37例与儿童10例新型冠状病毒肺炎的临床特点比较[J]. 山东大学学报 (医学版), 2020, 58(10): 112-116.
[15] 李焕杰,欧兰香,陈虹,陈健,耿军,高志鹏,王岩,丁兴龙,陈振,朱之炜,刘伦琴,汪运山. 新型冠状病毒IgM-IgG抗体检测试剂盒的制备及对15例患者临床应用初试[J]. 山东大学学报 (医学版), 2020, 58(10): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[4] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[5] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89 -95 .
[6] 张迪,于猛,刘霞. 神经调控技术简述[J]. 山东大学学报 (医学版), 2020, 1(8): 50 -60 .
[7] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61 -66 .
[8] 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88 -94 .
[9] 张洪彬,赵寒辉,王素霞,周鹏,贺青卿,王延群,丁伟平,柳刚. 303例甲状旁腺切除术围术期观察及术后严重低钙血症危险因素分析[J]. 山东大学学报 (医学版), 2020, 1(9): 14 -20 .
[10] 孙薏丰,高玉,梁永媛,高杨. CPLX2在30例肝癌组织的表达及其对体外细胞增殖与侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 34 -39 .