您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 101-117.doi: 10.6040/j.issn.1671-7554.0.2023.0468

• 临床医学 • 上一篇    下一篇

综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因

陈映均,刘同刚   

  1. 滨州医学院附属医院感染性疾病科, 山东 滨州 256603
  • 收稿日期:2023-06-01 发布日期:2023-10-10
  • 通讯作者: 刘同刚. E-mail:liutonggang123@126.com
  • 基金资助:
    山东省自然科学基金面上项目(ZR2020MH322)

Comprehensive bioinformatics analysis to identify differentially expressed genes for aberrant methylation modification in HBV-associated HCC

CHEN Yingjun, LIU Tonggang   

  1. Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
  • Received:2023-06-01 Published:2023-10-10

摘要: 目的 探讨与乙型肝炎病毒(HBV)相关肝细胞癌(HCC)发生发展相关的异常甲基化修饰的差异表达基因及分子机制,以期望用于肝癌的早期诊断。 方法 从公共基因表达数据库(GEO)中下载表达谱芯片GSE121248、GSE107170和DNA甲基化芯片GSE136319,采用R语言筛选HBV相关HCC中癌组织和癌旁组织间差异表达基因(DEGs)和差异甲基化基因(DMGs),并绘制可视化火山图。对甲基化差异表达基因(MDEGs)进行基因本体论(GO)和京都基因和基因组百科全书(KEGG)富集分析,构建蛋白质相互作用(PPI)网络,并使用Cytoscape软件进行分子复合物检测(MCODE)分析和利用cytoHubba插件筛选关键基因。通过癌症基因组图谱(TCGA)数据库验证关键基因的mRNA表达水平,并采用皮尔逊相关系数来评估关键基因在HCC中甲基化和基因表达之间的关系。使用HPA数据库、Cox比例风险回归模型、Kaplan Meier-plotter数据库和ROC分析对关键基因进行蛋白表达、生存分析验证以及预测准确率效能;并分析关键基因的表达与临床指标(肿瘤大小、病理分期)之间的相关性。 结果 从GSE121248和GSE107170数据集中分别筛选出921个和1 172个DEGs,其中下调表达基因分别为570个和714个,上调表达基因分别为351个和458个;DNA甲基化芯片GSE136319数据进行差异分析后,有7 952个高甲基化基因,2 630个低甲基化基因。综合分析DEGs和DMGs,共得到33个低甲基化修饰下表达上调的基因,和158个高甲基化修饰下表达下调的基因。GO富集分析表明,异常甲基化修饰的差异表达基因主要参与羧酸分解代谢、有机酸分解代谢和血红素结合等过程;KEGG通路主要为化学致癌DNA加合物、补体和凝血系统和PPAR信号通路等。STRING和 Cytoscape软件筛选出12个与甲基化表达相关的关键基因,包括FTCD、HRG、C8A、FOXM1、FGA、KLKB1、MBL2、FETUB、TTK、AURKA、PRC1和MAD2L1;经临床样本数据验证,FTCD、HRG、C8A、FOXM1、AURKA、PRC1、TTK和MAD2L1这8个基因在HBV相关HCC患者中差异表达,且与患者预后不良有关;FTCD、HRG、FOXM1、TTK、AURKA、PRC1和MAD2L1的表达水平与肿瘤大小和病理分期相关。 结论 FTCD、HRG、C8A、FOXM1、TTK、AURKA、PRC1和MAD2L1在HBV相关HCC的发病过程中可能起着重要的作用,有可能作为HBV相关HCC的潜在诊断标志物及治疗靶点。

关键词: 乙型肝炎病毒, 肝细胞癌, DNA甲基化, 生物标志物, 生物信息学分析

Abstract: Objective To explore the differentially expressed genes(DEGs)and molecular mechanism of abnormal methylation modification associated with the development of hepatitis B virus(HBV)-associated hepatocellular carcinoma(HCC)for the early diagnosis of this disease. Methods After the expression profile chips GSE121248, GSE107170 and DNA methylation chip GSE136319 were downloaded from the Gene Expression Database(GEO), the DEGs and differentially methylated genes(DMGs)between HBV-associated HCC tissues and adjacent tissues were screened with R language, and the visual volcano map was drawn. Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analysis of the methylated-differentially expressed genes(MDEGs)were performed to construct protein-protein interaction(PPI)networks. The molecular complex detection(MCODE)was conducted with Cytoscap, and key genes were screened with cytoHubba plugin. The mRNA expression levels of key genes were verified with the Cancer Genome Atlas(TCGA). The relationship between methylation and gene expression of key genes in HCC was determined with Pearson correlation coefficient. HPA database, Cox proportional hazard regression model, Kaplan Meier-plotter database and receiver operating characteristic(ROC)curve were used to verify the protein expressions of key genes, survival analysis and prediction accuracy. The correlation between the expressions of key genes and clinical indicators(tumor size, pathological stage)were analyzed. Results A total of 921 and 1,172 DEGs were screened from the GSE121248 and GSE107170 datasets, respectively, with 570 and 714 down-regulated and 351 and 458 upregulated genes, respectively. After differential analysis of GSE136319 data, 7 952 genes were hyptrmethylated and 2 630 genes were hypomethylated. A comprehensive analysis of DEGs and DMGs yielded 33 genes upregulated under hypomethylation modification and 158 genes downregulated under hypermethylation modification. GO enrichment analysis showed that the DEGs with abnormal methylation modification were mainly involved in organic acid catabolic process, carboxylic acid catabolic process and heme binding; KEGG pathways were mainly involved in chemical carcinogenesis, complements, coagulation cascades and PPAR signaling pathway. STRING and Cytoscape screened out 12 key genes related to methylation, including FTCD, HRG, C8A, FOXM1, FGA, KLKB1, MBL2, FETUB, TTK, AURKA, PRC1and MAD2L1. After clinical verification, FTCD, HRG, C8A, FOXM1, AURKA, PRC1, TTK and MAD2L1 were confirmed to be differentially expressed in HBV-related HCC and were associated with poor prognosis. The expression levels of FTCD, HRG, FOXM1, TTK, AURKA, PRC1 and MAD2L1 were correlated with tumor size and pathological stage. Conclusion FTCD, HRG, C8A, FOXM1, TTK, AURKA, PRC1 and MAD2L1 may play important roles in the pathogenesis of HBV-related HCC, which may serve as potential diagnostic markers and therapeutic targets.

Key words: Hepatitis B virus, Hepatocellular carcinoma, DNA methylation, Biomarker, Bioinformatics analysis

中图分类号: 

  • R735.7
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Wu CC, Li MN, Meng HB, et al. Analysis of status and countermeasures of cancer incidence and mortality in China [J]. Sci China Life Sci, 2019, 62(5): 640-647.
[3] 董菁, 高沿航, 刘嵘, 等. HBV/HCV相关肝细胞癌抗病毒治疗专家共识(2021年更新版)[J]. 临床肝胆病杂志, 2021, 37(10): 2292-2302, 2499. Dong Jing, Gao Yanhang, Liu Rong, et al. Expert consensus on antiviral therapy for HBV/HCV-related hepatocellular carcinoma: a 2021 update [J]. Journal of Clinical Hepatology, 2021, 37(10): 2292-2302, 2499.
[4] Li XC, Xu WQ, Kang W, et al. Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features [J]. Theranostics, 2018, 8(6): 1740-1751.
[5] Zhou SL, Zhou ZJ, Song CL, et al. Whole-genome sequencing reveals the evolutionary trajectory of HBV-related hepatocellular carcinoma early recurrence [J]. Signal Transduct Target Ther, 2022, 7(1): 24. doi:10.1038/s41392-021-00838-3.
[6] Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma [J]. Gastroenterology, 2019, 156(2): 477-491.
[7] Razin A, Cedar H. DNA methylation and genomic imprinting [J]. Cell, 1994, 77(4): 473-476.
[8] Ye C, Tao R, Cao QY, et al. Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma [J]. Int J Oncol, 2016, 49(2): 589-602.
[9] Russo G, Tramontano A, Iodice I, et al. Epigenome chaos: stochastic and deterministic DNA methylation events drive cancer evolution [J]. Cancers, 2021, 13(8): 1800.
[10] Li Q, Deng CL, Zhang T, et al. Association of GSTP1 and P16 promoter methylation with the risk of HBV-related hepatocellular carcinoma: a meta-analysis [J]. Onco Targets Ther, 2018, 11: 5789-5796. doi:10.2147/OTT.S168444.
[11] 范海燕, 张慧景, 郭占军, 等. 肝细胞癌患者癌组织中RASSF1A和WIF-1基因甲基化的临床意义[J]. 山东大学学报(医学版), 2013, 51(5): 89-93, 104. FAN Haiyan, ZHANG Huijing, GUO Zhanjun, et al. Prognostic significance of RASSF1A and WIF-1 methylation in the cancer tissues of patients with HCC [J]. Journal of Shandong University(Health Sciences), 2013, 51(5): 89-93, 104.
[12] Lee ECS, Elhassan SAM, Lim GPL, et al. The roles of circular RNAs in human development and diseases [J]. Biomed Pharmacother, 2019, 111: 198-208. doi:10.1016/j.biopha.2018.12.052.
[13] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets: update [J]. Nucleic Acids Res, 2013, 41(Database issue): D991-D995. doi:10.1093/nar/gks1193.
[14] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res, 2015, 43(7): e47. doi:10.1093/nar/gkv007.
[15] Shu JT, Liu YF, Shan YJ, et al. Deep sequencing microRNA profiles associated with wooden breast in commercial broilers [J]. Poult Sci, 2021, 100(12): 101496. doi:10.1016/j.psj.2021.101496.
[16] Ma JB, Li R, Wang J. Characterization of a prognostic four?gene methylation signature associated with radiotherapy for head and neck squamous cell carcinoma [J]. Mol Med Rep, 2019, 20(1): 622-632.
[17] Jia AQ, Xu L, Wang Y. Venn diagrams in bioinformatics [J]. Brief Bioinform, 2021, 22(5): bbab108. doi:10.1093/bib/bbab108.
[18] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1): 25-29.
[19] Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs [J]. Nucleic Acids Res, 2017, 45(D1): 353-361.
[20] Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res, 2021, 49(D1): 605-612.
[21] Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization [J]. Bioinformatics, 2011, 27(3): 431-432.
[22] Chen QL, Yan Q, Feng KL, et al. Using integrated bioinformatics analysis to identify abnormally methylated differentially expressed genes in hepatocellular carcinoma [J]. Int J Gen Med, 2021, 14: 805-823. doi:10.2147/IJGM.S294505.
[23] Wang ZN, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas(TCGA)[J]. Methods Mol Biol, 2016, 1418: 111-141. doi:10.1007/978-1-4939-3578-9_6.
[24] Tang ZF, Kang BX, Li CW, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis [J]. Nucleic Acids Res, 2019, 47(W1):556-560.
[25] 贺士卿, 李皖皖, 董书晴, 等. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报(医学版), 2022, 60(8): 34-43. HE Shiqing, LI Wanwan, DONG Shuqing, et al. Construction of a prognostic risk model of pyroptosis-related genes in breast cancer based on database [J]. Journal of Shandong University(Health Science), 2022, 60(8): 34-43.
[26] Liu JF, Lichtenberg T, Hoadley KA, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics [J]. Cell, 2018, 173(2): 400-416.
[27] Qiang R, Zhao ZT, Tang L, et al. Identification of 5 hub genes related to the early diagnosis, tumour stage, and poor outcomes of hepatitis B virus-related hepatocellular carcinoma by bioinformatics analysis [J]. Comput Math Methods Med, 2021: 9991255. doi:10.1155/2021/9991255.
[28] Seo W, Gao YH, He Y, et al. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles [J]. J Hepatol, 2019, 71(5): 1000-1011.
[29] 余雨, 成军, 梅传忠, 等. 乙型肝炎病毒相关肝细胞癌核心差异表达基因生物信息学分析[J]. 中国血吸虫病防治杂志, 2022, 34(5): 507-513. YU Yu, CHENG Jun, MEI Chuanzhong, et al. Bioinformatics analysis of core differentially expressed genes in hepatitis B virus-related hepatocellular carcinoma [J]. Chinese Journal of Schistosomiasis Control, 2022, 34(5): 507-513.
[30] Kew MC. Aflatoxins as a cause of hepatocellular carcinoma [J]. J Gastrointestin Liver Dis, 2013, 22(3): 305-310.
[31] Chen X, Liao L, Li YW, et al. Screening and functional prediction of key candidate genes in hepatitis B virus-associated hepatocellular carcinoma [J]. Biomed Res Int, 2020: 7653506. doi:10.1155/2020/7653506[PubMed]
[32] Ye L, Kan FM, Yan T, et al. Enhanced antiviral and antifibrotic effects of short hairpin RNAs targeting HBV and TGF-β in HBV-persistent mice [J]. Sci Rep, 2017, 7(1): 3860.
[33] Sun K, Wang Q, Huang XH. PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta-induced connective tissue growth factor expression [J]. Acta Pharmacol Sin, 2006, 27(6): 715-723.
[34] Ye L, Chen T, Cao JQ, et al. Short hairpin RNA attenuates liver fibrosis by regulating the PPAR-γ and NF-κB pathways in HBV-induced liver fibrosis in mice [J]. Int J Oncol, 2020, 57(5): 1116-1128.
[35] Lapierre P, Hajoui O, Homberg JC, et al. Formiminotransferase cyclodeaminase is an organ-specific autoantigen recognized by sera of patients with autoimmune hepatitis [J]. Gastroenterology, 1999, 116(3): 643-649.
[36] Seimiya M, Tomonaga T, Matsushita K, et al. Identification of novel immunohistochemical tumor markers for primary hepatocellular carcinoma; clathrin heavy chain and formiminotransferase cyclodeaminase [J]. Hepatology, 2008, 48(2): 519-530.
[37] Chen JJ, Chen ZM, Huang ZT, et al. Formiminotransferase cyclodeaminase suppresses hepatocellular carcinoma by modulating cell apoptosis, DNA damage, and phosphatidylinositol 3-kinases(PI3K)/akt signaling pathway [J]. Med Sci Monit, 2019, 25: 4474-4484. doi:10.12659/MSM.916202.
[38] Poon IK, Patel KK, Davis DS, et al. Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasma [J]. Blood, 2011, 117(7): 2093-2101.
[39] Zou XJ, Zhang DY, Song Y, et al. HRG switches TNFR1-mediated cell survival to apoptosis in Hepatocellular Carcinoma [J]. Theranostics, 2020, 10(23): 10434-10447.
[40] He X, Wang Y, Zhang W, et al. Screening differential expression of serum proteins in AFP-negative HBV-related hepatocellular carcinoma using iTRAQ-MALDI-MS/MS [J]. Neoplasma, 2014, 61(1): 17-26.
[41] Castaneda M, Hollander PD, Mani SA. Forkhead box transcription factors: double-edged swords in cancer [J]. Cancer Res, 2022, 82(11): 2057-2065.
[42] Yuan BW, Liu YH, Yu XH, et al. FOXM1 contributes to taxane resistance by regulating UHRF1-controlled cancer cell stemness [J]. Cell Death Dis, 2018, 9(5): 562.
[43] Wang L, Shi CY, Yu J, et al. FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma [J]. Cancer Cell Int, 2022, 22(1): 47.
[44] Miao RY, Luo HT, Zhou HD, et al. Identification of prognostic biomarkers in hepatitis B virus-related hepatocellular carcinoma and stratification by integrative multi-omics analysis[J]. J Hepatol, 2014, 61(4): 840-849.
[45] Liang XD, Dai YC, Li ZY, et al. Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma [J]. PLoS One, 2014, 9(6): e97739. doi:10.1371/journal.pone.0097739.
[46] Liu X, Liao WJ, Yuan Q, et al. TTK activates Akt and promotes proliferation and migration of hepatocellular carcinoma cells [J]. Oncotarget, 2015, 6(33): 34309-34320.
[47] Du RJ, Huang CT, Liu KD, et al. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy [J]. Mol Cancer, 2021, 20(1): 15. doi:10.1186/s12943-020-01305-3.
[48] Islam B, Yu HY, Duan TQ, et al. Cell cycle kinases(AUKA, CDK1, PLK1)are prognostic biomarkers and correlated with tumor-infiltrating leukocytes in HBV related HCC [J]. J Biomol Struct Dyn, 2023: 1-17. doi:10.1080/07391102.2022.2164056.
[49] Cui SY, Zhang K, Li C, et al. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A [J]. Oncotarget, 2016, 7(47): 78009-78028.
[50] Kieserman EK, Glotzer M, Wallingford JB. Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis [J]. Curr Biol, 2008, 18(2): 116-123.
[51] 于克娜, 孙凯月, 张杰, 等. 西妥昔单抗治疗头颈部鳞状细胞癌差异表达基因的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 117-124. YU Kena, SUN Kaiyue, ZHANG Jie, et al. Analysis of differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma using bioinformatics [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 117-124.
[52] Li J, Dallmayer M, Kirchner T, et al. PRC1: linking cytokinesis, chromosomal instability, and cancer evolution [J]. Trends Cancer, 2018, 4(1): 59-73.
[53] Tian Y, Arai E, Makiuchi S, et al. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas [J]. J Cancer Res Clin Oncol, 2020, 146(10): 2461-2477.
[54] Brulotte ML, Jeong BC, Li FX, et al. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing [J]. Nat Commun, 2017, 8(1): 1956. doi:10.1038/s41467-017-02012-2.
[55] Jeong SJ, Shin HJ, Kim SJ, et al. Transcriptional abnormality of the hsMAD2 mitotic checkpoint gene is a potential link to hepatocellular carcinogenesis [J]. Cancer Res, 2004, 64(23): 8666-8673.
[56] Fan GR, Tu YQ, Chen C, et al. DNA methylation biomarkers for hepatocellular carcinoma [J]. Cancer Cell Int, 2018, 18: 140. doi:10.1186/s12935-018-0629-5.
[57] Willis S, Polydoropoulou V, Sun YL, et al. Exploratory analysis of single-gene predictive biomarkers in HERA DASL cohort reveals that C8A mRNA expression is prognostic of outcome and predictive of benefit of trastuzumab [J]. JCO Precis Oncol, 2018, 2: PO.18.00016. doi:10.1200/PO.18.00016.
[58] Jang HN, Moon SJ, Jung KC, et al. Mass spectrometry-based proteomic discovery of prognostic biomarkers in adrenal cortical carcinoma [J]. Cancers, 2021, 13(15): 3890.
[1] 常晴,刘佳,曲爱林,杨咏梅. 利用数据库信息分析NAMPT与肝癌的病理特征和免疫浸润的关联性[J]. 山东大学学报 (医学版), 2023, 61(4): 26-36.
[2] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[3] 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34.
[4] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[5] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[6] 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109.
[7] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[8] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[9] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
[10] 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13.
[11] 刘翠晓, 朱晓艳, 张娜, 黄鹏翔, 王国永, 康殿民. 山东省单纯艾滋病病毒感染与合并乙型肝炎病毒感染者抗病毒治疗效果及相关因素[J]. 山东大学学报 (医学版), 2020, 58(1): 60-66.
[12] 黄金献,李栋,李聪,时庆,鞠秀丽. 三维和二维培养的脐带间充质干细胞DNA甲基化水平比较[J]. 山东大学学报 (医学版), 2019, 57(11): 1-8.
[13] 毕涛,卢倩倩,孙传东. 腺病毒介导HBx对人淋巴细胞影响的体外实验[J]. 山东大学学报 (医学版), 2018, 56(7): 15-20.
[14] 王红阳. 精准医疗时代的肿瘤生物标志物发展[J]. 山东大学学报 (医学版), 2018, 56(10): 1-2.
[15] 王传新. 外泌体生物标志物与肿瘤发生发展的研究进展[J]. 山东大学学报 (医学版), 2018, 56(10): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .