山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (4): 26-36.doi: 10.6040/j.issn.1671-7554.0.2022.0913
• 临床医学 • 上一篇
常晴,刘佳,曲爱林,杨咏梅
CHANG Qing, LIU Jia, QU Ailin, YANG Yongmei
摘要: 目的 分析烟酰胺磷酸核糖转移酶(NAMPT)在肝细胞癌(HCC)中的表达,并研究其与肝癌患者病理特征及免疫浸润的关系。 方法 利用TIMER数据库获得NAMPT在HCC中的表达数据。通过UALCAN数据库分析NAMPT表达与血清甲胎蛋白(AFP)之间的相关性。从TCGA-LIHC中下载肝癌转录组RNA-Seq数据,提取NAMPT和免疫相关分子 mRNA表达量。利用估计算法和单样本基因集富集分析(ssGSEA),评估NAMPT高低表达组间免疫成分、基质成分的数量和免疫细胞浸润丰度及计算免疫相关分子表达有无差异;分析NAMPT表达与免疫细胞浸润的关联性。 结果 TIMER数据库显示,NAMPT mRNA在HCC中的表达低于癌旁组织(P<0.05)。UALCAN数据库检测发现,NAMPT表达和血清AFP呈负向低度相关(r=-0.464, P<0.05)。基质细胞占比、免疫细胞占比和肿瘤细胞纯度在NAMPT高低表达组间存在统计学差异(P<0.05)。ssGSEA分析发现,20种免疫细胞在NAMPT高表达组中的浸润程度高于NAMPT低表达组(P<0.05)。免疫相关分子NKG2D、CD40、FAS、ELANE、PDL1、PDL2在两组中的表达差异有统计学意义(P<0.05)。TIMER数据库分析发现,NAMPT的表达与巨噬细胞(r=0.125, P=0.021)、中性粒细胞(r=0.284, P<0.001)和树突状细胞(r=0.131, P=0.016)浸润呈正向低度相关,与肿瘤纯度呈负向低度相关(r=-0.137, P=0.011)。 结论 NAMPT与临床病理参数具有一定相关性,并能在一定程度反映肝癌患者免疫微环境的状态。本研究为鉴别肝癌免疫治疗获益人群提供了新的线索。
中图分类号:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [2] Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features[J]. Gastroenterology, 2017, 153(3): 812-826. [3] Vogel A, Cervantes A, Chau I, et al. Corrigendum to "Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up": [Annals of Oncology 29 suppl. 4(2018)v238-iv255] [J]. Ann Oncol, 2022, 33(6): 666. [4] Zhao J, Zhu XC, Wu XS, et al. Identification of miR-4644 as a suitable endogenous normalizer for circulating miRNA quantification in hepatocellular carcinoma[J]. J Cancer, 2020, 11(23): 7032-7044. [5] Hao X, Sun G, Zhang Y, et al. Targeting immune cells in the tumor microenvironment of HCC: new opportunities and challenges[J]. Front Cell Dev Biol, 2021, 9: 775462. doi: 10.3389/fcell.2021.775462. [6] Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors[J]. Cancer Cell, 2020, 37(4): 443-455. [7] Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. [8] Moore AM, Zhou L, Cui J, et al. NAD(+)depletion by type I interferon signaling sensitizes pancreatic cancer cells to NAMPT inhibition[J]. Proc Natl Acad Sci USA, 2021, 118(8): e2012469118. doi: 10.1073/pnas.2012469118. [9] Gasparrini M, Audrito V. NAMPT: a critical driver and therapeutic target for cancer[J]. Int J Biochem Cell Biol, 2022, 145: 106189. doi:10.1016/j.biocel.2022.103189. [10] Lucena-Cacace A, Otero-Albiol D, Jiménez-García MP, et al. NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through sirt1 and PARP[J]. Clin Cancer Res, 2018, 24(5): 1202-1215. [11] Lucena-Cacace A, Otero-Albiol D, Jiménez-García MP, et al. NAMPT overexpression induces cancer stemness and defines a novel tumor signature for glioma prognosis[J]. Oncotarget, 2017, 8(59): 99514-99530. [12] Franceschini N, Oosting J, Tamsma M, et al. Targeting the NAD salvage synthesis pathway as a novel therapeutic strategy for osteosarcomas with low NAPRT expression[J]. Int J Mol Sci, 2021, 22(12): 6273. doi: 10.3390/ijms22126273. [13] Zhang H, Zhang N, Liu Y, et al. Epigenetic regulation of NAMPT by NAMPT-AS drives metastatic progression in triple-negative breast cancer[J]. Cancer Res, 2019, 79(13): 3347-3359. [14] Audrito V, Managò A, Gaudino F, et al. NAD-biosynthetic and consuming enzymes as central players of metabolic regulation of innate and adaptive immune responses in cancer[J]. Front Immunol, 2019, 10: 1720. doi: 10.3389/fimmu.2019.01720. [15] Guo HJ, Li HY, Chen ZH, et al. NAMPT promotes hepatitis B virus replication and liver cancer cell proliferation through the regulation of aerobic glycolysis[J]. Oncol Lett, 2021, 21(5):390. [16] Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110. [17] Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: An update to the integrated cancer data analysis platform[J]. Neoplasia, 2022, 25: 18-27. doi: 10.1016/j.neo.2022.01.001. [18] Hilmi M, Vienot A, Rousseau B, et al. Immune therapy for liver cancers[J]. Cancers(Basel), 2019, 12(1): 77. [19] Xing M, Wang X, Kiken RA, et al. Immunodiagnostic Biomarkers for hepatocellular carcinoma(HCC): the first step in detection and treatment[J]. Int J Mol Sci, 2021, 22(11): 6139. doi:10.3390/ijms22116139. [20] Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III Trial[J]. J Clin Oncol, 2020, 38(3): 193-202. [21] El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma(CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. [22] Chowdhry S, Zanca C, Rajkumar U, et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling[J]. Nature, 2019, 569(7757): 570-575. [23] Chen H, Wang S, Zhang H, et al. Nicotinamide phosphoribosyltransferase(Nampt)in carcinogenesis: new clinical opportunities[J]. Expert Rev Anticancer Ther, 2016, 16(8): 827-838. [24] Adya R, Tan BK, Chen J, et al. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: its role in MMP-2/9 production and activation[J]. Diabetes Care, 2008, 31(4): 758-760. [25] Ma R, Wu Y, Zhai Y, et al. Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT-NAD+-SIRT1 pathway[J]. Nucleic Acids Res, 2019, 47(21): 11132-11150. [26] Guo X, Tan S, Wang T, et al. NAD(+)salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity[J]. Hepatology, 2022. doi: 10.1002/hep.32658. [27] Deng Y, Song Z, Huang L, et al. Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer[J]. Aging(Albany NY), 2021, 13(22): 24768-24785. [28] Garnelo M, Tan A, Her Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma[J]. Gut, 2017, 66(2): 342-351. [29] Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and hopes[J]. Clin Cancer Res, 2017, 23(22): 6764-6770. [30] Park H, Jung JH, Jung MK, et al. Effects of transarterial chemoembolization on regulatory T cell and its subpopulations in patients with hepatocellular carcinoma[J]. Hepatol Int, 2020, 14(2): 249-258. [31] Korniotis S, Saichi M, Trichot C, et al. GM-CSF-activated human dendritic cells promote Tfh1 cell polarization in a CD40-dependent manner[J]. J Cell Sci, 2022, 135(21): jcs260298. doi: 10.1242/jcs.260298. [32] Wang Y, Wang F, Wang L, et al. NAD(+)supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells[J]. Cell Rep, 2021, 36(6): 109516. doi: 10.1016/j.celrep.2021.109516. [33] Lv H, Lv G, Chen C, et al. NAD(+)metabolism maintains inducible PD-L1 expression to drive tumor immune evasion[J]. Cell Metab, 2021, 33(1): 110-127. [34] Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 361-375. |
[1] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[2] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[3] | 李雁儒,李娟,李培龙,杜鲁涛,王传新. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报 (医学版), 2022, 60(10): 33-41. |
[4] | 华芳,张薇薇,吕波,辛玮. 生物信息学分析骨关节炎滑膜炎症相关基因和分子途径[J]. 山东大学学报 (医学版), 2021, 59(3): 10-17. |
[5] | 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33. |
[6] | 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51. |
[7] | 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13. |
[8] | 朱爱国,马振敕,王健. 利用上皮源性卵巢癌预后的多基因信息建立预测预后模型[J]. 山东大学学报 (医学版), 2019, 57(10): 80-85. |
[9] | 周剑,赵晗婷,吕刚,王琳,李启航,朱美艳,王志林,何深一. 弓形虫ROP19蛋白生物信息学分析及真核表达载体的构建[J]. 山东大学学报(医学版), 2017, 55(3): 64-69. |
[10] | 王伟,曹煜姗,孙达权,黄小琼,徐国强. 人TIMP-2蛋白在肝癌细胞迁移与侵袭中的作用[J]. 山东大学学报(医学版), 2016, 54(7): 11-17. |
[11] | 王小林, 王虎, 何发清, 郭兵文. 肝细胞癌经导管肝动脉化疗栓塞术治疗后 CT检查与评价[J]. 山东大学学报(医学版), 2014, 52(S2): 74-75. |
[12] | 袁首道, 王凤琴, 张娇, 赵蔚明, 陈健行. 宫颈腺癌细胞与宫颈鳞癌细胞蛋白表达差异的质谱分析[J]. 山东大学学报(医学版), 2014, 52(8): 14-21. |
[13] | 郭卫华, 赵素红, 庞国栋, 邵广瑞. 磁共振弥散加权成像评估肝细胞癌组织学分级的价值[J]. 山东大学学报(医学版), 2014, 52(12): 89-93. |
[14] | 范海燕,张慧景,郭占军,李胜棉. 肝细胞癌患者癌组织中RASSF1A和WIF-1基因甲基化的临床意义[J]. 山东大学学报(医学版), 2013, 51(5): 89-93. |
[15] | 孟海鹏,牛卫博,吴小鹏,郭森,刘毅,陈雨信. 门静脉癌栓分型对肝癌手术远期预后的影响[J]. 山东大学学报(医学版), 2013, 51(12): 61-66. |
|