山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (10): 33-41.doi: 10.6040/j.issn.1671-7554.0.2022.0169
李雁儒,李娟,李培龙,杜鲁涛,王传新
LI Yanru, LI Juan, LI Peilong, DU Lutao, WANG Chuanxin
摘要: 目的 筛选健康对照与不同进展期胰腺癌患者的血清外泌体差异蛋白质,绘制差异蛋白质表达图谱,并分析差异蛋白质参与的生物学过程。 方法 采用非标记定量蛋白质组学进行外泌体蛋白质检测,筛选差异蛋白质并进行生物信息学分析;利用蛋白免疫印迹对与胰腺癌进展相关的蛋白质进行血清学验证。 结果 在对照组、胰腺癌未转移组和转移组样品中共检测到2 242个蛋白质。通过不同分组差异蛋白质分析,共鉴定出664个差异具有统计学意义的蛋白质,主要参与囊泡介导转运、局灶黏附、细胞外基质(ECM)受体相互作用等信号通路。此外,鉴定到在3组间差异均有统计学意义的蛋白质5个,验证发现富亮氨酸α2糖蛋白1(LRG1)在胰腺癌转移组外泌体中表达量较高。 结论 对照组、胰腺癌未转移组和转移组间蛋白质表达存在差异,差异蛋白质主要富集于局灶黏附、细胞外基质受体相互作用等信号通路,且在3组间表达均有差异的外泌体蛋白质LRG1可能成为监测胰腺癌进展的血清学标志物。
中图分类号:
[1] Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7):493-502. [2] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. [3] Vincent A, Herman J, Schulick R, et al. Pancreatic cancer[J]. Lancet, 2011, 378(9791): 607-620. [4] Jiang K, Chen H, Fang Y, et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness[J]. J Exp Clin Cancer Res, 2021, 40(1): 21. [5] Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718): 382-386. [6] 韩柳, 孙宇. 胞外囊泡与癌症[J]. 中国细胞生物学学报, 2016, 38(4): 347-355. HAN Liu, SUN Yu. Extracellular vesicles and cancer[J]. Chinese Journal of Cell Biology, 2016, 38(4): 347-355. [7] Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182. [8] Liu Z, Liu Y, Qian L, et al. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies[J]. Mol Cell, 2021, 81(19): 4076-4090. [9] Liu J, Yuan B, Cao J, et al. Ambra1 promotes TGFbeta signaling via nonproteolytic polyubiquitylation of smad4[J]. Cancer Res, 2021, 81(19): 5007-5020. [10] Wu J, Gao W, Tang Q, et al. M2 macrophage-derived exosomes facilitate HCC metastasis by transferring alphaM beta2 integrin to tumor cells[J]. Hepatology, 2021, 73(4): 1365-1380. [11] Wang D, Zhao C, Xu F, et al. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2[J]. Theranostics, 2021, 11(6): 2860-2875. [12] Yuan X, Qian N, Ling S, et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells[J]. Theranostics, 2021, 11(3): 1429-1445. [13] Wang S, Xu M, Li X, et al. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties[J]. J Hematol Oncol, 2018, 11(1): 82. [14] Yoon JH, Ashktorab H, Smoot DT, et al. Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells[J]. Gastric Cancer, 2020, 23(5): 848-862. [15] Repetto O, De Re V, Giuffrida P, et al. Proteomics signature of autoimmune atrophic gastritis: towards a link with gastric cancer[J]. Gastric Cancer, 2021, 24(3): 666-679. [16] Thakur R, Singh PK. Molecular subtypes of pancreatic cancer: a proteomics approach[J]. Clin Cancer Res, 2021, 27(12): 3272-3274. [17] Kugeratski FG, Hodge K, Lilla S, et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker[J]. Nat Cell Biol, 2021, 23(6): 631-641. [18] Yang J, Zhang Y, Gao X, et al. Plasma-derived exosomal ALIX as a novel biomarker for diagnosis and classification of pancreatic cancer[J]. Front Oncol, 2021, 11: 628346. doi: 10.3389/fonc.2021.628346. [19] Han S, Huo Z, Nguyen K, et al. The proteome of pancreatic cancer-derived exosomes reveals signatures rich in key signaling pathways[J]. Proteomics, 2019, 19(13): e1800394. doi: 10.1002/pmic.201800394. [20] Castillo J, Bernard V, San Lucas FA, et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients[J]. Ann Oncol, 2018, 29(1): 223-229. [21] Shi X, Guo X, Li X, et al. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover[J]. Cancer Lett, 2018, 433: 76-85. doi: 10.1016/j.canlet.2018.06.015. [22] Okamoto H, Kusama T, Fujii H. Tyrosine phosphorylation of focal adhesion anchoring proteins enhances human pancreatic cancer cell invasion[J]. Pancreas, 2016, 45(7): 37-39. [23] Wang X, Luo G, Zhang K, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis[J]. Cancer Res, 2018, 78(16): 4586-4598. [24] Yang B, Feng X, Liu H, et al. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma[J]. Oncogene, 2020, 39(42): 6529-6543. [25] Chen Q, Yu D, Zhao Y, et al. Screening and identification of hub genes in pancreatic cancer by integrated bioinformatics analysis[J]. J Cell Biochem, 2019, 120(12): 19496-19508. [26] Chen S, Gao C, Yu T, et al. Bioinformatics analysis of a prognostic miRNA signature and potential key genes in pancreatic cancer[J]. Front Oncol, 2021, 11: 641289. doi: 10.3389/fonc.2021.641289. [27] Singhal M, Gengenbacher N, Abdul Pari AA, et al. Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis[J]. Sci Transl Med, 2021, 13(609): eabe6805. doi: 10.1126/scitranslmed.abe6805. [28] He L, Feng A, Guo H, et al. LRG1 mediated by ATF3 promotes growth and angiogenesis of gastric cancer by regulating the SRC/STAT3/VEGFA pathway[J]. Gastric Cancer, 2022, 25(3): 527-541. [29] Zhong B, Cheng B, Huang X, et al. Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling[J]. Cell Death Dis, 2021, 13(1): 16. doi: 10.1038/s41419-021-04461-6. |
[1] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[2] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
[3] | 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147. |
[4] | 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55. |
[5] | 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27. |
[6] | 华芳,张薇薇,吕波,辛玮. 生物信息学分析骨关节炎滑膜炎症相关基因和分子途径[J]. 山东大学学报 (医学版), 2021, 59(3): 10-17. |
[7] | 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33. |
[8] | 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 59-69. |
[9] | 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51. |
[10] | 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13. |
[11] | 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75. |
[12] | 王国云,袁明,姬苗苗. 子宫内膜异位症发病机制研究进展[J]. 山东大学学报 (医学版), 2019, 57(6): 33-39. |
[13] | 魏萍,杜鲁涛,王卿,展垚,谢玉姣,张淑君,段伟丽,王传新. 血清外泌体miR-20b-5p对非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(4): 91-96. |
[14] | 朱爱国,马振敕,王健. 利用上皮源性卵巢癌预后的多基因信息建立预测预后模型[J]. 山东大学学报 (医学版), 2019, 57(10): 80-85. |
[15] | 王传新. 外泌体生物标志物与肿瘤发生发展的研究进展[J]. 山东大学学报 (医学版), 2018, 56(10): 18-23. |
|