您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 17-27.doi: 10.6040/j.issn.1671-7554.0.2021.0288

• 基础医学 • 上一篇    下一篇

氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析

张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵   

  1. 山东大学, 山东省千佛山医院整形外科学, 济南市组织工程皮肤再生与创面修复临床医学研究中心, 山东 济南 250014
  • 发布日期:2021-04-30
  • 通讯作者: 王一兵. E-mail:ybwang@sdfmu.edu.cn
  • 基金资助:
    国家自然科学基金(81972947)

Quantitative proteomic analysis of epidermal stem cells in oxygen-glucose deprivation conditions

ZHANG Huayu, YIN Siyuan, LIU Jian, MA Jiaxu, SONG Ru, CAO Guoqi, WANG Yibing   

  1. Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan 250014, Shandong, China
  • Published:2021-04-30

摘要: 目的 寻找缺血条件下导致表皮干细胞功能紊乱的关键蛋白和通路,探讨慢性难愈合创面的形成机制。 方法 从新生乳鼠皮肤中提取表皮干细胞,在氧糖剥夺条件下分别培养0、3、6、9和12 h。将0 h作为对照组,其他各组为实验组,共得到4个比较组:OGD3_vs_OGD0、OGD6_vs_OGD0、OGD9_vs_OGD0和OGD12_vs_OGD0。使用串联质谱标记(TMT)技术对不同组别的表皮干细胞进行定量蛋白质组学测定,筛选4个比较组中发生明显差异表达的蛋白质,然后对这些差异表达蛋白进行基因本体(GO)类别、京都基因与基因组百科全书(KEGG)通路、蛋白质互作、基因重叠和专门针对线粒体自噬相关通路和蛋白的分析,以寻找在表皮干细胞功能紊乱中起关键作用的蛋白质和通路。 结果 共检测到4 852种可定量蛋白质,根据表达倍数>1.2倍和FDR值<0.05的筛选标准,4个比较组中分别筛选到上调的差异表达蛋白1种、225种、346种和386种,下调的差异表达蛋白26种、229种、330种和462种。通过对OGD6_vs_OGD0比较组的分析研究筛选出的关键类别和通路包括核糖核蛋白复合物的生物发生(GO:0022613),胞质核糖体大亚基(GO:0022625),染色质结合(GO:0003682)和核糖体(ko03010)。通过蛋白质互作分析筛选到21种hub蛋白,均为核糖体大亚基结构蛋白,而其中的seed蛋白为线粒体核糖体蛋白MRPL24;通过4个比较组的综合富集分析发现,各比较组的差异表达蛋白之间存在着大量的重叠,富集分析得到的关键通路都与蛋白质的生产加工有关;线粒体自噬相关的蛋白中,与溶酶体成熟相关的Tbc1d15、Rab7A和抑癌基因p53的表达量持续上调,与自噬流高低相关的LC3的表达量没有确切的变化趋势。 结论 通过TMT定量蛋白质组学分析获得的关键蛋白MRPL24和与蛋白质生产加工相关的富集通路是氧糖剥夺条件下表皮干细胞功能紊乱的关键,是进一步研究慢性难愈合创面形成机制的突破点,同时也为寻找相关治疗靶点提供了有力支持。

关键词: 慢性难愈合创面, 表皮干细胞, 氧糖剥夺, 线粒体自噬, 蛋白质组学

Abstract: Objective To find the key proteins and pathways leading to the dysfunction of epidermal stem cells in oxygen-glucose deprivation(OGD)conditions and to explore the formation mechanism of chronic hard healing wounds. Methods Epidermal stem cells were extracted from newborn mice and cultured normally to the P3 generation. The cells were cultured under OGD conditions for 0, 3, 6, 9 and 12 h, respectively, and then were divided into five goups: 0 h was taken as the control group, and the other groups were taken as the experimental groups. There are four comparison groups: OGD3_vs_OGD0, OGD6_vs_OGD0, OGD9_vs_OGD0 and OGD12_vs_OGD0. Quantitative proteomics determination was performed on different groups of epidermal stem cells using Tandem mass tag(TMT)technology. The four comparison groups were screened for proteins with significantly differential expression. These differentially expressed proteins(DEPs)were analyzed for Gene Ontology(GO)category, KEGG pathway, protein-protein interaction(PPI), gene overlap, and analysis of pathways and proteins related to mitophagy to find the key proteins and pathways in the dysfunction of epidermal stem cells. Results A total of 4 852 quantifiable proteins were detected in the experiment. In the four comparison groups, that is, OGD3_vs_OGD0, OGD6_vs_OGD0, OGD9_vs_OGD0, and OGD12_vs_OGD0, the number of up-regulated DEPs were 1, 225, 346 and 386, respectively, while the number of down-regulated DEPs were 26, 229, 330 and 462, respectively. In the analysis of the comparison group OGD6_vs_OGD0, key pathways included “ribonucleoprotein complex biogenesis(GO: 0022613)”“chromatin binding(GO: 0003682)”“cytoplasmic ribosomal large subunit(GO:0022625)” and “ribosome(ko03010)”,and the 21 hub proteins screened through PPI analysis were all structural proteins of the ribosome, of which the most important seed protein was the mitochondrial ribosomal protein MRPL24. In the comprehensive analysis of the four comparison groups, it was found that there was a large amount of overlap between the DEPs of each comparison group, and key pathways were all related to protein processing. In the analysis of mitophagy-related pathway and proteins, it was found that the expression of Tbc1d15, Rab7a, which were related to lysosomal maturation and p53, continued to be up-regulated, while the expression of LC3 related to the level of autophagy flow did not show a definite trend. Conclusion The key protein “MRPL24” obtained through TMT quantitative proteomics analysis and the pathways related to protein processing are the key to the dysfunction of epidermal stem cells in OGD conditions. They will be the breakthrough points for further research on the formation mechanism of chronic hard healing wounds.

Key words: Chronic hard healing wounds, Epidermal stem cells, Oxygen-glucose deprivation, Mitophagy, Proteomic analysis

中图分类号: 

  • R574
[1] 陈端凯,单云龙,唐乾利. 从细胞外微环境探讨MEBT/MEBO对慢性难愈合创面的修复作用[J]. 中国烧伤创疡杂志, 2019, 31(4): 236-239. CHEN Duankai, SHAN Yunlong, TANG Qianli. Study on the effect of MEBT/MEBO in repairing chronic refractory wounds from the perspective of extracellular microenvironment[J]. The Chinese Journal of Burns Wounds and Surface Ulcers, 2019, 31(4): 236-239.
[2] Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014, 6(265): 265sr6. doi: 10.1126/scitranslmed.3009337.
[3] Han G, Ceilley R. Chronic wound healing: a review of current management and treatments[J]. Adv Ther, 2017, 34(3): 599-610.
[4] Sorg H, Tilkorn DJ, Hager S, et al. Skin wound healing: an update on the current knowledge and concepts[J]. Eur Surg Res, 2017, 58(1-2): 81-94.
[5] 张建中,高兴华.皮肤性病学[M]. 北京:人民卫生出版社, 2015: 3-4.
[6] Lopez-Paniagua M, Nieto-Miguel T, de la Mata A, et al. Consecutive expansion of limbal epithelial stem cells from a single limbal biopsy[J]. Curr Eye Res, 2013, 38(5): 537-549.
[7] Pikula M, Kondej K, Jaskiewicz J, et al. Flow cytometric sorting and analysis of human epidermal stem cell candidates[J]. Cell Biol Int, 2010, 34(9): 911-915.
[8] 程飚,付小兵. 微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志, 2020, 36(11): 1003-1008. CHENG Biao, FU Xiaobing. Microenvironment control is the only way to achieve perfect wound repair[J]. Chinese Journal of Burns, 2020, 36(11): 1003-1008.
[9] Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5.
[10] Bhatia-Kissová I, Camougrand N. Mitophagy: a process that adapts to the cell physiology[J]. Int J Biochem Cell Biol, 2013, 45(1): 30-33.
[11] Huang C, Hong L, Xu J, et al. Protective roles of autophagy in retinal pigment epithelium under high glucose condition via regulating PINK1/Parkin pathway and BNIP3L[J]. Biol Res, 2018, 51(1):22. doi: 10.1186/s40659-018-0169-4.
[12] Arciuch AVG, Elguero ME, Poderoso JJ, et al. Mitochondrial regulation of cell cycle and proliferation[J]. Antioxid Redox Signal, 2012, 16(10): 1150-1180.
[13] Zhu W, Yuan Y, Liao G, et al. Mesenchymal stem cells ameliorate hyperglycemia-induced endothelial injury through modulation of mitophagy[J]. Cell Death Dis, 2018, 9(8): 837. doi: 10.1038/s41419-018-0861-x.
[14] Graeme CM, Edward LH, Wilhelm H, et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses[J]. Anal Chem, 2012, 84(17): 7469-7478.
[15] Mesa KR, Kawaguchi K, Cockburn K, et al. Homeostatic epidermal stem cell self-renewal is driven by local differentiation[J]. Cell Stem Cell, 2018, 23(5): 677-686.
[16] Toivola DM, Boor P, Alam C, et al. Keratins in health and disease[J]. Curr Opin Cell Biol, 2015, 32: 73-81. doi: 10.1016/j.ceb.2014.12.008.
[17] Ichiro K, Hitoshi M, Kenji K, et al. Cytokeratin, filaggrin, and p63 expression in reepithelialization during human cutaneous wound healing[J]. Wound Repair Regen, 2006, 14(1): 38-45.
[18] Jacek RW, Alexandre Z, Nagarjuna N, et al. Universal sample preparation method for proteome analysis[J]. Nat Methods, 2009, 6(5): 359-362.
[19] Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1): 45-51.
[20] Weidberg H, Shvets E, Shpilka T, et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis[J]. EMBO J, 2010, 29(11): 1792-1802.
[21] Rõtig A. Human diseases with impaired mitochondrial protein synthesis[J]. Biochim Biophys Acta, 2011, 1807(2011): 1198-1205.
[22] Nottia M, Marchese M, Verrigni D, et al. A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly[J]. Neurobiol Dis, 2020, 141:104880. doi: 10.1016/j.nbd.2020.104880.
[23] Azakir BA, Desrochers G, Angers A. The ubiquitin ligase Itch mediates the antiapoptotic activity of epidermal growth factor by promoting the ubiquitylation and degradation of the truncated C-terminal portion of Bid[J]. FEBS J, 2010, 277(5): 1319-1330.
[24] Ferreira AF, Cunha PS, Carregal VM, et al. Extracellular vesicles from adipose-derived mesenchymal stem/stromal cells accelerate migration and activate Akt pathway in human keratinocytes and fibroblasts independently of mir-205 activity[J]. Stem Cells Int, 2017, 2017: 9841035. doi: 10.1155/2017/9841035.
[25] Cheong A, Lingutla R, Mager J. Expression analysis of mammalian mitochondrial ribosomal protein genes[J]. Gene Expr Patterns, 2020, 38: 119147. doi: 10.1016/j.gep.2020.119147.
[26] Pennisi E. The race to the ribosome structure[J]. Science, 1999, 285(5436): 2048-2051.
[27] Schramm JC, Dinh T, Veves A. Microvascular changes in the diabetic foot[J]. Int J Low Extrem Wounds, 2006, 5(3): 149-159.
[1] 李雁儒,李娟,李培龙,杜鲁涛,王传新. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报 (医学版), 2022, 60(10): 33-41.
[2] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[3] 熊超,刘力,冯建国,魏继承. 七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 25-30.
[4] 崔春英,申超,洪艳,陈建,刘雪平. 柿叶黄酮提取物对氧糖剥夺/复糖复氧损伤的HT22细胞氧化应激的保护作用[J]. 山东大学学报 (医学版), 2018, 56(6): 6-12.
[5] 李国华,池恒,邢慧敏,唐吉友. Orexin-A对缺氧状态下海马神经元的影响及其机制[J]. 山东大学学报(医学版), 2016, 54(4): 17-24.
[6] 王小岳, 王道光, 郭继生, 李翠玲, 荆瑞瑞, 吕鑫, 陈新骏, 杨静华. 非标记定量法对乙醇诱导肝损伤的蛋白质组学研究[J]. 山东大学学报(医学版), 2015, 53(3): 12-16.
[7] 刘亚飞, 张奇舒, 袁首道, 陈健行. HPV永生化细胞系与SiHa细胞系蛋白质表达差异的质谱分析[J]. 山东大学学报(医学版), 2015, 53(3): 22-26.
[8] 赵雪莲, 于君, 谢兆宏, 曹彦军, 刘震, 王晓, 徐琳琳, 杨慧, 郑晓磊, 沈阳, 毕建忠. 线粒体自噬在阿尔茨海默病细胞模型中的作用机制[J]. 山东大学学报(医学版), 2015, 53(10): 1-5.
[9] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58-62.
[10] 张焕丽1,崔亚洲2,周小艳2,尚伟1. 人类癫痫脑组织的蛋白质组学研究[J]. 山东大学学报(医学版), 2013, 51(3): 80-84.
[11] 王海滨,马伟明,萧畔,马天加,张怀强. 热休克蛋白60在多西紫杉醇治疗激素非依赖性前列腺癌过程中的差异表达[J]. 山东大学学报(医学版), 2012, 50(8): 46-50.
[12] 张华1,3, 刘雪霞2, 宋西成3,雷大鹏1,潘新良1,张庆泉3. T1期声门区喉癌差异蛋白质组学的初步分析[J]. 山东大学学报(医学版), 2012, 50(2): 110-115.
[13] 萧畔1,张怀强1,崔亚洲2,赵升田1,马天加1,周春文1. 多西紫杉醇诱导前列腺癌PC3细胞凋亡的蛋白质组学研究[J]. 山东大学学报(医学版), 2012, 50(10): 77-.
[14] 陈萌1,任宁2,刘文君1,秦晓敏1,李劲松1. 免疫荧光双标法在小鼠表皮干细胞分子标记筛选中的应用[J]. 山东大学学报(医学版), 2011, 49(4): 65-69.
[15] 张文华,徐淑军, 江玉泉, 李刚, 李新钢, 周茂德,吴承远. 抗抑郁药物去甲替林在皮质神经元细胞氧糖剥夺模型中的保护作用及机制[J]. 山东大学学报(医学版), 2011, 49(4): 29-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[2] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[3] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[4] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[5] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .
[6] . Graves病131治疗后1年内早发甲减影响因素分析[J]. 山东大学学报(医学版), 2009, 47(9): 5 -6 .
[7] 牛瑞,刘波,邵明举,王伟 . 非小细胞肺癌区域淋巴结中肺组织特异性基因的表达与预后的关系[J]. 山东大学学报(医学版), 2007, 45(9): 884 -885 .
[8] 焦芳芳,刘世青,李飞,李长生,王琴,孙青,鹿伟 . 化瘀理肺方对大鼠肺间质纤维化时Smad7和TGF-β表达的影响[J]. 山东大学学报(医学版), 2007, 45(10): 1054 -1058 .
[9] 赵瑛,颜磊,张辉,于鹏,李明江,赵兴波. 精子相关抗原9在卵巢浆液性上皮肿瘤中的表达[J]. 山东大学学报(医学版), 2012, 50(2): 98 .
[10] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .