您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (3): 25-30.doi: 10.6040/j.issn.1671-7554.0.2018.877

• • 上一篇    

七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响

熊超,刘力,冯建国,魏继承   

  1. 西南医科大学附属医院麻醉科, 四川 泸州 646000
  • 发布日期:2022-09-27
  • 通讯作者: 魏继承. E-mail:910289972@qq.com

Effects of sevoflurane preconditioning on silent information regulator of transcription 3 expression and acetylation in H9C2 cardiomyocytes after hypoxia/reoxygenation

XIONG Chao, LIU Li, FENG Jianguo, WEI Jicheng   

  1. Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
  • Published:2022-09-27

摘要: 目的 探究七氟醚预处理对大鼠H9C2心肌细胞缺氧/复氧后,对转录沉默信息调节器3(SIRT3)的表达及细胞蛋白乙酰化的影响。 方法 将大鼠H9C2心肌细胞随机分为对照组、缺氧/复氧组和七氟醚预处理组。低氧培养箱构建缺氧/复氧模型:对照组心肌细胞无任何处理;缺氧/复氧组心肌细胞缺氧2 h/复氧2 h;七氟醚预处理组心肌细胞在缺氧/复氧前予以2.5%七氟醚预处理1 h。四甲基偶氮唑蓝(MTT)检测各组细胞存活率;采用JC-1荧光探针检测线粒体膜电位;采用Western blotting法检测细胞整体蛋白及线粒体蛋白乙酰化水平、SIRT3表达及线粒体自噬水平的变化。 结果 缺氧/复氧组较对照组心肌细胞SIRT3(0.78±0.04 vs 1.04±0.06)表达减少,细胞整体蛋白(1.72±0.06 vs 0.98±0.03 )及线粒体蛋白(0.96±0.03 vs 0.45±0.03)乙酰化水平升高(P<0.05);同时心肌细胞存活率[(48.2±0.4)% vs 100%]、线粒体膜电位(1.72±0.14 vs 2.83±0.11)下降,线粒体自噬水平升高(P<0.05);与缺氧/复氧组相比,七氟醚预处理组心肌细胞SIRT3表达增加(0.93±0.03 vs 0.78±0.04),细胞整体蛋白(1.34±0.05 vs 1.72±0.06)及线粒体蛋白(0.65±0.04 vs 0.96±0.03)乙酰化水平降低(P<0.05);同时心肌细胞存活率[(65.80±1.53)% vs(48.20±0.40)%]及线粒体膜电位(2.33±0.12 vs 1.72±0.14)升高,线粒体自噬激活水平降低(P<0.05)。 结论 七氟醚预处理可以增加SIRT3表达,降低心肌细胞缺氧/复氧损伤后蛋白的乙酰化水平,可能是七氟醚预处理对心肌细胞保护作用的潜在分子机制。

关键词: 七氟醚预处理, 乙酰化, 转录沉默信息调节器3, 线粒体自噬, 缺氧/复氧

Abstract: Objective To investigate the effects of sevoflurane preconditioning on silent information regulator of transcription 3(SIRT3)expression and the acetylation of H9C2 cardiomyocytes after hypoxia/reoxygenation. Methods Rat H9C2 cardiomyocytes were randomly divided into control group, hypoxia/reoxygenation group and sevoflurane pretreatment group. Cells without any treatment served as control group. Hypoxia/reoxygenation models were prepared in a hypoxia incubator, in which cells were exposed to 2 h hypoxia followed by 2 h reoxygenation. Cells in the sevoflurane pretreatment group were treated with 2.5% sevoflurane for 1 h before hypoxia/reoxygenation processing. The cell survival 山 东 大 学 学 报 (医 学 版)57卷3期 -熊超,等.七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响 \=-was detected with methylthiazolyltetrazolium(MTT)assay. Mitochondrial membrane potential was examined with JC-1 fluorescence probe. The acetylation of proteins, especially that of mitochondrial protein, SIRT3 expression, and mitophagy level were detected with Western blotting. Results Compared with the control group, the hypoxia/reoxygenation group had decreased expression of SIRT3(0.78±0.04 vs 1.04±0.06), increased acetylation level of proteins(1.72±0.06 vs 0.98±0.03)and mitochondrial protein(0.96±0.03 vs 0.45±0.03)(P<0.05), decreased cell survival [(48.2±0.4)% vs 100%], decreased mitochondrial membrane potential(1.72±0.14 vs 2.83±0.11), and increased mitophagy level(P<0.05). Compared with the hypoxia/reoxygenation group, the sevoflurane pretreatment group had increased expression of SIRT3(0.93±0.03 vs 0.78±0.04), decreased acetylation level of proteins(1.34±0.05 vs 1.72±0.06)and mitochondrial protein(0.65±0.04 vs 0.96±0.03)(P<0.05), increased cell survival [(65.80±1.53)% vs (48.20±0.40)%] and mitochondrial membrane potential(2.33±0.12 vs 1.72±0.14), and decreased mitophagy level(P<0.05). Conclusion Sevoflurane pretreatment is capable of elevating the expression of SIRT3 and downregulating the acetylation of H9C2 cells after hypoxia/reoxygenation injury, which might be the molecular mechanism underlying the protective effects of sevoflurane on cardiomyocytes.

Key words: Sevoflurane preconditioning, Acetylization, Silent information regulator of transcription 3, Mitophagy, Hypoxia/reoxygenation

中图分类号: 

  • R197.1
[1] Ikeda Y, Shirakabe A, Brady C, et al. Molecular mechanisms mediating mitochondrial dynamics and Mitophagy and their functional roles in the cardiovascular system [J]. J Mol Cell Cardiol, 2015, 78: 116-122. doi:10.1016/j.yjmcc.2014.09.019.
[2] Yu P, Zhang J, Yu SC, et al. Protective effect of sevoflurane postconditioning against cardiac Ischemia/Reperfusion injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance [J]. PLoS One, 2015, 10(8): e0134666. doi:10.1371/journal.pone.0134666
[3] 邬云斌, 刘新伟, 刘玲. Sirt3在心肌保护方面的研究进展[J]. 临床麻醉学杂志, 2012, 28(10): 1024-1025. WU Yunbin, LIU Xinwei, LIU Ling. Research progress of Sirt3 in myocardial protection [J]. The Journal of Clinical Anesthesiology, 2012, 28(10): 1024-1025.
[4] Pantazi E, Zaouali MA, Bejaoui M, et al. Role of sirtuins in ischemia-reperfusion injury [J]. World J Gastroenterol, 2013, 19(43): 7594-7602.
[5] Trevi(~overn)o-Salda(~overn)a N, Garcí a-Riras G. Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals [J]. Oxid Med Cell Longev, 2017, 2017: 1750306. doi:10.1155/2017/1750306.
[6] Wang ZL, Cui RS, Wang K. Effects of sevoflurane pretreatment on the apoptosis of rat H9c2 cardiomyocytes and the expression of GRP78 [J]. Exp Ther Med, 2018, 15(3): 2818-2823.
[7] 王露, 牛力, 许鹏程. 七氟醚预处理对缺氧/复氧损伤心肌细胞中自噬的影响[J]. 国际麻醉学与复苏杂志, 2015, 36(9): 785-789. WANG Lu, NIU Li, XU Pengcheng. Effects of sevoflurane preconditioning on autophagy during hypoxia/reoxygenation injury in cardiomyocytes [J]. International Journal of Anesthesiology and Resuscitation, 2015, 36(9): 785-789.
[8] Yu J, Wu JJ, Xie P, et al. Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology [J]. Peer J, 2016, 4: e2659. doi:10.7717/peerj.2659.
[9] 吴萌, 吕平, 杨亚丽, 等. 高糖对心肌细胞损害调节新机制:烟酰胺核糖通过Sirt3-p53/PGC-1α改善线粒体自噬及线粒体合成[J]. 心脏杂志, 2018, 30(2): 130-135. WU Meng, LU Ping, YANG Yali, et al. Nicotinamide riboside alleviates high glucose injury in adult mouse cardiomyocytes via the Sirt3-PGC-1α/P53 pathway through mitochondrial synthesis and mitochondrial autopahgy [J]. Chin Heart, 2018, 30(2): 130-135.
[10] Sun W, Liu CX, Chen QH, et al. SIRT3: A new regulator of cardiovascular diseases [J]. Oxid Med Cell Longev, 2018, 2018: 7293861. doi:10.1155/2018/7293861.
[11] Parodi-Rullán RM, Chapa-Dubocq X, Rullán PJ, et al. Corrigendum: high sensitivity of SIRT3 deficienthearts to ischemia-reperfusion is associated with mitochondrial abnormalities[J]. Front Pharmacol, 2017, 8: 439. doi:10.3389/fphar.2017.00439.
[12] Klishadi MS, Zarei F, Hejazian SH, et al. Losartan protects the heart against ischemia reperfusion injury:sirtuin3 involvement [J]. J Pharm Pharm Sci, 2015, 18(1): 112-123.
[13] Porter GA, Urciuoli WR, Brookes PS, et al. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts [J]. Am J Physiol Heart Circ Physiol, 2014, 306(12): 1602-1609.
[14] Zorova LD, Popkov VA, Plotnikov EY, et al. Mitochondrial membrane potential [J]. Anal Biochem, 2018, 552:50-59. doi:10.1016/j.ab.2017.07.009.
[15] Dorn GWnd. Parkin-dependent mitophagy in the heart [J]. J Mol Cell Cardiol, 2016, 95: 42-49. doi:10.1016/j.yjmcc.2015.11.023.
[16] Webster BR, Scott I, Han K, et al. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy [J]. J Cell Sci, 2013, 126(Pt 21): 4843-4849.
[17] 张静, 乔世刚, 殷明, 等. 七氟醚后处理对大鼠心肌缺血再灌注时线粒体自噬的影响[J]. 中华麻醉学杂志, 2015, 35(8): 944-947. ZHANG Jing, QIAO Shigang, YIN Ming, et al. Effects of sevoflurane postconditioning on mitophagy during ischemia-reperfusion in rats[J]. Chinese Journal of Anesthesiology, 2015, 35(8): 944-947.
[18] McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis [J]. Curr Opin Cell Biol, 2017, 45: 83-91. doi: 10.1016/j.ceb.2017.03.013.
[19] Metlagel Z, Otomo C, Ohashi K, et al. Structural insights into E2-E3 interaction for LC3 lipidation [J]. Autophagy, 2014, 10(3): 522-523.
[20] Wang SJ, Zhao ZJ, Fan YH, et al. Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent Mitophagy [J]. Biochim Biophys Acta Mol Basis Dis, 2018, S0925-S4439(18): 30133-30139. doi:10.1016/j.bbadis.2018.04.009
[21] Li Y, Ma Y, Song LQ, et al. SIRT3 deficiency exacerbates p53/Parkin mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts[J]. Int J Mol Med, 2018, 41(6): 3517-3520.
[1] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[2] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[3] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
[4] 赵作辉,李翠玲,王道光,王风芹,曲宏懿,丁森泰,巩晶,吕家驹,杨静华. MnSOD乙酰化对肾透明细胞癌786-O细胞增殖、凋亡的影响[J]. 山东大学学报(医学版), 2017, 55(9): 31-35.
[5] 乔珊, 韩涛, 李文娜, 王胜军, 赵秀鹤, 杨雪, 刘学伍. 新型组蛋白脱乙酰酶抑制剂11r对癫痫持续状态大鼠的神经保护作用[J]. 山东大学学报(医学版), 2015, 53(6): 39-43.
[6] 张伟, 周勇, 牛俊婕, 徐英, 侯华英, 姜玉华. 抗癫痫药丙戊酸钠对大鼠正常脑组织的放射保护作用[J]. 山东大学学报(医学版), 2015, 53(10): 11-15.
[7] 赵雪莲, 于君, 谢兆宏, 曹彦军, 刘震, 王晓, 徐琳琳, 杨慧, 郑晓磊, 沈阳, 毕建忠. 线粒体自噬在阿尔茨海默病细胞模型中的作用机制[J]. 山东大学学报(医学版), 2015, 53(10): 1-5.
[8] 李俊强1,郭继生1,王小岳1,王道光1,赵作辉2,杨静华1. ALS小鼠脊髓组织GFAP蛋白赖氨酸的乙酰化修饰[J]. 山东大学学报(医学版), 2013, 51(10): 15-18.
[9] 牛俊婕1,王晗1,2,徐英1,周勇1,姜玉华1. 丙戊酸钠增强大鼠胶质瘤C6细胞放射敏感性的体外实验[J]. 山东大学学报(医学版), 2013, 51(06): 15-19.
[10] 孙雪林1,2,卜培莉1,刘军妮1,曹广庆3,李丽4,于琼4. 心房颤动患者心房组织SIRT1表达与心房纤维化的相关性[J]. 山东大学学报(医学版), 2012, 50(9): 68-72.
[11] 许诺,姜军梅,冯珊珊,王冠华,孟玫,尹晓燕. 内源性NO对裸鼠肝癌模型中HDAC4表达的影响[J]. 山东大学学报(医学版), 2011, 49(8): 48-51.
[12] 王冠华1,姜军梅1,孟玫2,许诺1. 组蛋白去乙酰化酶4和血管内皮生长因子受体-1对肝癌细胞株HepG2侵袭黏附的影响[J]. 山东大学学报(医学版), 2011, 49(3): 68-72.
[13] 王冠华1,姜军梅1,孟玫2,许诺1. 组蛋白去乙酰化酶4和血管内皮生长因子受体-1对肝癌细胞株HepG2侵袭黏附的影响[J]. 山东大学学报(医学版), 2011, 49(3): 68-72.
[14] . 曲古抑菌素A对外周血自然杀伤细胞活性和功能的影响[J]. 山东大学学报(医学版), 2009, 47(8): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!