山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (6): 33-39.doi: 10.6040/j.issn.1671-7554.0.2019.521
• • 上一篇
王国云,袁明,姬苗苗
WANG Guoyun, YUAN Ming, JI Miaomiao
摘要: 子宫内膜异位症(EMs)是妇科常见疾病,在育龄期妇女中发病率为10%,EMs的主要症状包括疼痛与不孕,严重影响患者生活质量。但是目前缺乏EMs特异性无创诊断方法,EMs的治疗方式主要限于手术治疗和激素治疗,且均存在不良反应较多、复发率较高的问题。EMs发病机制的不明确导致EMs诊疗尚无突破性进展。目前经血逆流学说为EMs发病主流学说,但最新研究表明EMs是一个复杂的慢性疾病,经血逆流很可能只是EMs的诱因,后续复杂的基因、免疫与环境因素之间的相互作用在EMs进程中发挥重要作用。归纳目前EMs主要发病机制学说,凝练EMs各分支领域的最新进展,着重总结EMs研究的新方向,并进一步提出EMs机制研究中面临的难题。
中图分类号:
[1] Giudice LC. Clinical practice. Endometriosis[J]. N Engl J Med, 2010, 362(25): 2389-2398. [2] Vercellini P, Viganò P, Somigliana E, et al. Endometriosis: pathogenesis and treatment[J]. Nat Rev Endocrinol, 2014, 10(5): 261-275. [3] Zondervan KT, Becker CM, Koga K, et al. Endometriosis[J]. Nat Rev Dis Primers, 2018, 4(1): 9. doi: 10.1038/s41572-018-0008-5. [4] Symons LK, Miller JE, Kay VR, et al. The immunopathophysiology of endometriosis[J]. Trends Mol Med, 2018, 24(9): 748-762. [5] Sampson JA. Metastatic or Embolic endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation[J]. Am J Pathol, 1927, 3(2): 93-110. [6] Missmer SA, Hankinson SE, Spiegelman D, et al. Reproductive history and endometriosis among premenopausal women[J]. Obstet Gynecol, 2004, 104(5 Pt 1): 965-974. [7] Vercellini P, Abbiati A, Viganò P, et al. Asymmetry in distribution of diaphragmatic endometriotic lesions: evidence in favour of the menstrual reflux theory[J]. Hum Reprod, 2007, 22(9): 2359-2367. [8] DHooghe TM, Bambra CS, Raeymaekers BM, et al. Increased prevalence and recurrence of retrograde menstruation in baboons with spontaneous endometriosis[J]. Hum Reprod, 1996, 11(9): 2022-2025. [9] Witz CA, Cho S, Centonze VE, et al. Time series analysis of transmesothelial invasion by endometrial stromal and epithelial cells using three-dimensional confocal microscopy[J]. Fertil Steril, 2003, 79(Suppl 1): 770-778. [10] Sanchez AM, Viganò P, Somigliana E, et al. The endometriotic tissue lining the internal surface of endometrioma: hormonal, genetic, epigenetic status, and gene expression profile[J]. Reprod Sci, 2015, 22(4): 391-401. [11] Ferguson BR, Bennington JL, Haber SL. Histochemistry of mucosubstances and histology of mixed müllerian pelvic lymph node glandular inclusions. Evidence for histogenesis by müllerian metaplasia of coelomic epithelium[J]. Obstet Gynecol, 1969, 33(5): 617-625. [12] Du HL, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis[J]. Stem Cells, 2007, 25(8): 2082-2086. [13] Gargett CE, Masuda H. Adult stem cells in the endometrium[J]. Mol Hum Reprod, 2010, 16(11): 818-834. [14] Mechsner S, Weichbrodt M, Riedlinger WF, et al. Estrogen and progestogen receptor positive endometriotic lesions and disseminated cells in pelvic sentinel lymph nodes of patients with deep infiltrating rectovaginal endometriosis: a pilot study[J]. Hum Reprod, 2008, 23(10): 2202-2209. [15] Gargett CE, Schwab KE, Brosens JJ, et al. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis[J]. Mol Hum Reprod, 2014, 20(7): 591-598. [16] Treloar SA, Wicks J, Nyholt DR, et al. Genomewide linkage study in 1, 176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26[J]. Am J Hum Genet, 2005, 77(3): 365-376. [17] Zondervan KT, Treloar SA, Lin JH, et al. Significant evidence of one or more susceptibility loci for endometriosis with near-Mendelian inheritance on chromosome 7p13-15[J]. Hum Reprod, 2007, 22(3): 717-728. [18] Sapkota Y, Steinthorsdottir V, Morris AP, et al. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism[J]. Nat Commun, 2017, 8: 15539. doi:10.1038/ncomms15539. [19] Anglesio MS, Papadopoulos N, Ayhan A, et al. Cancer-associated mutations in endometriosis without cancer[J]. N Engl J Med, 2017, 376(19): 1835-1848. [20] Li XL, Zhang Y, Zhao LY, et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes[J]. Hum Mol Genet, 2014, 23(22): 6008-6021. [21] Suda K, Nakaoka H, Yoshihara K, et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium[J]. Cell Rep, 2018, 24(7): 1777-1789. [22] Borghese B, Zondervan KT, Abrao MS, et al. Recent insights on the genetics and epigenetics of endometriosis[J]. Clin Genet, 2017, 91(2): 254-264. [23] Dyson MT, Roqueiro D, Monsivais D, et al. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis[J]. PLoS Genet, 2014, 10(3): e1004158. [24] Burney RO, Hamilton AE, Aghajanova L, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis[J]. Mol Hum Reprod, 2009, 15(10): 625-631. [25] Lin YJ, Lai MD, Lei HY, et al. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model[J]. Endocrinology, 2006, 147(3): 1278-1286. [26] Takamura M, Koga K, Izumi G, et al. Neutrophil depletion reduces endometriotic lesion formation in mice[J]. Am J Reprod Immunol, 2016, 76(3): 193-198. [27] Capobianco A, Rovere-Querini P. Endometriosis, a disease of the macrophage[J]. Front Immunol, 2013, 14(1): 53. [28] Berbic M, Schulke L, Markham R, et al. Macrophage expression in endometrium of women with and without endometriosis[J]. Hum Reprod, 2009, 24(2): 325-332. [29] Chuang PC, Wu MH, Shoji Y, et al. Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis[J]. J Pathol, 2009, 219(2): 232-241. [30] Chuang PC, Lin YJ, Wu MH, et al. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis[J]. Am J Pathol, 2010, 176(2): 850-860. [31] Lousse JC, Van Langendonckt A, González-Ramos R, et al. Increased activation of nuclear factor-kappa B(NF-kappaB)in isolated peritoneal macrophages of patients with endometriosis[J]. Fertil Steril, 2008, 90(1): 217-220. [32] Chan RWS, Lee CL, Ng EHY, et al. Co-culture with macrophages enhances the clonogenic and invasion activity of endometriotic stromal cells[J]. Cell Prolif, 2017, 50(3). doi: 10.1111/cpr.12330. [33] Shao J, Zhang B, Yu JJ, et al. Macrophages promote the growth and invasion of endometrial stromal cells by downregulating IL-24 in endometriosis[J]. Reproduction, 2016, 152(6): 673-682. [34] Tran LV, Tokushige N, Berbic M, et al. Macrophages and nerve fibres in peritoneal endometriosis[J]. Hum Reprod, 2009, 24(4): 835-841. [35] Greaves E, Temp J, Esnal-Zufiurre A, et al. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis[J]. Am J Pathol, 2015, 185(8): 2286-2297. [36] Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease[J]. Am J Pathol, 2009, 175(2): 547-556. [37] Itoh F, Komohara Y, Takaishi K, et al. Possible involvement of signal transducer and activator of transcription-3 in cell-cell interactions of peritoneal macrophages and endometrial stromal cells in human endometriosis[J]. Fertil Steril, 2013, 99(6): 1705-1713. [38] Beste MT, Pfäffle DN, Prentice EA, et al. Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation[J]. Sci Transl Med, 2014, 6(222): 222ra16. doi: 10.1126/scitranslmed.3007988. [39] Yuan M, Li D, An M, et al. Rediscovering peritoneal macrophages in a murine endometriosis model[J]. Hum Reprod, 2017, 32(1): 94-102. [40] Oosterlynck DJ, Meuleman C, Waer M, et al. Immunosuppressive activity of peritoneal fluid in women with endometriosis[J]. Obstet Gynecol, 1993, 82(2): 206-212. [41] González-Foruria I, Santulli P, Chouzenoux S, et al. Soluble ligands for the NKG2D receptor are released during endometriosis and correlate with disease severity[J]. PLoS One, 2015, 10(3): e0119961. [42] Matsuoka S, Maeda N, Izumiya C, et al. Expression of inhibitory-motif killer immunoglobulin-like receptor, KIR2DL1, is increased in natural killer cells from women with pelvic endometriosis[J]. Am J Reprod Immunol, 2005, 53(5): 249-254. [43] Kang YJ, Jeung IC, Park A, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression[J]. Hum Reprod, 2014, 29(10): 2176-2189. [44] Guo SW, Du YB, Liu XS. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer(NK)cytotoxicity in women with endometriosis[J]. Hum Reprod, 2016, 31(7): 1462-1474. [45] Yu JJ, Sun HT, Zhang ZF, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis[J]. Reproduction, 2016, 152(2): 151-160. [46] Podgaec S, Abrao MS, Dias JA Jr, et al. Endometriosis: an inflammatory disease with a Th2 immune response component[J]. Hum Reprod, 2007, 22(5): 1373-1379. [47] Gogacz M, Winkler I, Bojarska-Junak A, et al. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis[J]. J Reprod Immunol, 2016, 117: 39-44. doi:10.1016/j.jri.2016.04.289. [48] de Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, et al. “What do we know about regulatory T cells and endometriosis? A systematic review”[J]. J Reprod Immunol, 2017, 120: 48-55. doi:10.1016/j.jri.2017.04.003. [49] Bulun SE, Yilmaz BD, Sison C, et al. Endometriosis[J]. Endocrine Reviews, 2019: pii: er.2018-00242. doi: 10.1210/er.2018-00242. [50] Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications[J]. Hum Reprod Update, 2018. doi: 10.1093/humupd/dmy001. [51] Schjenken JE, Panir K, Robertson SA, et al. Exosome-mediated intracellular signalling impacts the development of endometriosis-new avenues for endometriosis research[J]. Mol Hum Reprod, 2019, 25(1): 2-4. [52] Harp D, Driss A, Mehrabi S, et al. Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro[J]. Cell Tissue Res, 2016, 365(1): 187-196. [53] Sun HH, Li D, Yuan M, et al. Eutopic stromal cells of endometriosis promote neuroangiogenesis via exosome pathway[J]. Biol Reprod, 2019, 100(3): 649-659. [54] Zhang AF, Wang GY, Jia LH, et al. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-κB signaling pathway[J]. Int J Mol Med, 2019, 43(1): 358-370. [55] Qiu JJ, Lin XJ, Zheng TT, et al. The exosomal long noncoding RNA aHIF is upregulated in serum from patients with endometriosis and promotes angiogenesis in endometriosis[J]. Reprod Sci, 2019: 1933719119831775. doi: 10.1177/1933719119831775. [56] Laschke MW, Menger MD. The gut microbiota: a puppet master in the pathogenesis of endometriosis?[J]. Am J Obstet Gynecol, 2016, 215(1): 68.e1-e4. [57] Bailey MT, Coe CL. Endometriosis is associated with an altered profile of intestinal microflora in female rhesus monkeys[J]. Hum Reprod, 2002, 17(7): 1704-1708. [58] Yuan M, Li D, Zhang Z, et al. Endometriosis induces gut microbiota alterations in mice[J]. Hum Reprod, 2018, 33(4): 607-616. [59] Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084. [60] Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089. [61] Chadchan SB, Cheng M, Parnell LA, et al. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota[J]. Hum Reprod, 2019, 34(6):1106-1116. [62] Wu L, Lv C, Su YF, et al. Expression of programmed death-1(PD-1)and its ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol[J]. Gynecological Endocrinology, 2019, 35(3): 251-256. [63] Walankiewicz M, Grywalska E, Polak G, et al. The increase of circulating PD-1- and PD-L1-expressing lymphocytes in endometriosis: correlation with clinical and laboratory parameters[J]. Mediators Inflamm, 2018, 2018: 7041342. doi: 10.1155/2018/7041342. [64] Xie Q, He H, Wu YH, et al. Eutopic endometrium from patients with endometriosis modulates the expression of CD36 and SIRP-α in peritoneal macrophages[J]. J Obstet Gynaecol Res, 2019, 45(5): 1045-1057. [65] Bellofiore N, Ellery SJ, Mamrot J, et al. First evidence of a menstruating rodent: the spiny mouse(Acomys cahirinus)[J]. Am J Obstet Gynecol, 2017, 216(1): 40.e41-40.e11. |
[1] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
[2] | 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64. |
[3] | 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-. |
[4] | 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94. |
[5] | 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102. |
[6] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[7] | 闫鹏 王蓉 杜怡峰 沈伦乾. 老年性痴呆患者尿中AD7c-NTP含量的研究[J]. 山东大学学报(医学版), 2209, 47(6): 106-. |
[8] | 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128. |
[9] | 颜磊,岳彩欣,刘懿淳. 子宫内膜异位症的生育力保护[J]. 山东大学学报 (医学版), 2022, 60(9): 31-34. |
[10] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[11] | 李军,李保敏,杨璐. UBA5 基因突变致早发性癫痫性脑病临床特征与遗传学分析[J]. 山东大学学报 (医学版), 2022, 60(8): 58-62. |
[12] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[13] | 王陆敏,周士英,黄启坤,刘艳丽. DNAH5基因新发突变致原发性纤毛运动障碍1例[J]. 山东大学学报 (医学版), 2022, 60(8): 103-108. |
[14] | 冷金花,史精华. 子宫腺肌病的临床表现[J]. 山东大学学报 (医学版), 2022, 60(7): 1-5. |
[15] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
|