您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (11): 1-8.doi: 10.6040/j.issn.1671-7554.0.2019.813

• 基础医学 •    

三维和二维培养的脐带间充质干细胞DNA甲基化水平比较

黄金献1,李栋2,李聪1,时庆2,鞠秀丽1   

  1. 1. 山东大学齐鲁医院儿科, 山东 济南 250012;2. 山东大学干细胞与再生医学研究中心, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 鞠秀丽. E-mail: jxlqlyy@163.com
  • 基金资助:
    山东省重点研发计划(2017GSF18155;2017GSF218015);济南市自然科学基金(201704066);山东省自然科学基金(ZR2018MH012)

Comparison of DNA methylation levels between three-dimensional and two-dimensional cultured umbilical cord mesenchymal stem cells

HUANG Jinxian1, LI Dong2, LI Cong1, SHI Qing2, JU Xiuli1   

  1. 1. Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Stem Cell and Regenerative Medicine Research Center, Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨三维培养对脐带间充质干细胞(UC-MSCs)全基因组DNA甲基化状态的影响。 方法 通过贴壁培养法获得UC-MSCs,采用流式细胞术鉴定其细胞表型。采用聚氟乙烯巢状片进行三维培养,吖啶橙荧光观察UC-MSCs在支架上生长情况。采用甲基化DNA免疫共沉淀测序(MeDIP-Seq)技术检测细胞全基因组DNA甲基化情况。 结果 成功分离培养UC-MSCs并证明其表型符合国际标准,细胞黏附在聚氟乙烯巢状片三维培养体系中且生长良好。MeDIP-Seq结果显示,三维培养后UC-MSCs全基因组DNA甲基化水平较二维培养整体上调。基因本体(GO)分析显示,与二维培养的细胞相比,三维培养的UC-MSCs中上调的差异甲基化基因多参与蛋白质的代谢、膜相关细胞器的组成、酶活性调节等;而下调的差异甲基化基因主要参与囊泡运输和cGMP代谢过程。通路分析显示,三维培养的UC-MSCs中上调的差异甲基化基因多参与RNA转运、神经配体受体活性、Notch信号通路等;下调的差异甲基化基因多参与磷酸肌醇代谢通路和囊泡分泌相关的通路。 结论 三维培养改变了UC-MSCs的DNA甲基化谱,所涉及的甲基化上调基因多参与细胞的迁移和增殖功能。三维培养降低了UC-MSCs的免疫调控和分泌囊泡相关基因的甲基化水平。

关键词: 脐带间充质干细胞, 三维培养, DNA甲基化, 甲基化DNA免疫共沉淀测序

Abstract: Objective To explore the effects of three-dimensional(3D)culture on the whole genome DNA methylation profile of umbilical cord mesenchymal stem cells(UC-MSCs). Methods UC-MSCs were isolated from umbilical cords using tissue adherent culture. Their phenotypes were identified with flow cytometry. Then UC-MSCs were cultured in 3D polyvinyl fluoride nested scaffolds and 2D conventional culture flask, respectively. Acridine orange was used to observe UC-MSCs on the scaffold. Methylated DNA immunoprecipitation(MeDIP-Seq)method was used to detect the whole genome DNA methylation of UC-MSCs. Results UC-MSCs were successfully isolated from umbilical cords and able to grow on the 3D scaffold. The genomic DNA methylation level of UC-MSCs increased after 3D culture. Gene ontology analysis showed that the up-regulated differential methylation genes were involved in protein metabolism, membrane-related organelle composition, and enzyme activity regulation. Down-regulated differential methylation genes were involved in vesicle trafficking and cGMP metabolic processes regulating. According to pathway analyses, differential methylation genes were involved in RNA transport, neuroactive ligand-receptor interaction, cellular communication, and 山 东 大 学 学 报 (医 学 版)57卷11期 -黄金献,等.三维和二维培养的脐带间充质干细胞DNA甲基化水平比较 \=-vesicle secretion-related pathways. Conclusion 3D culture changes the DNA methylation profile of UC-MSCs. The up-regulated methylation levels will alter the function of cell migration and proliferation. 3D culture reduces the methylation level of immune regulation and secretion of vesicle-related genes in UC-MSCs.

Key words: Mesenchymal stromal cells, Three-dimensional culture, DNA methylation, methylated DNA immunoprecipitation sequencing

中图分类号: 

  • R574
[1] Arutyunyan I, Elchaninov A, Makarov A, et al. Umbilical cord as prospective source for mesenchymal stem cell-based therapy[J]. Stem Cells Int, 2016, 2016: 17. doi: 10.1155/2016/6901286.
[2] Cosgrove BD, Mui KL, Driscoll TP, et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells[J]. Nat Mater, 2016, 15(12): 1297-1306.
[3] Qazi TH, Mooney DJ, Duda GN, et al. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs[J]. Biomaterials, 2017, 140: 103-114. doi: 10.1016/j.biomaterials.2017.06.019.
[4] Li Y, Wu Q, Wang Y, et al. Immunogenicity of hepatic differentiated human umbilical cord mesenchymal stem cells promoted by porcine decellularized liver scaffolds[J]. Xenotransplantation, 2017, 24(1): e12287.
[5] Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
[6] Jeltsch A, Jurkowska RZ. New concepts in DNA methylation[J]. Trends Biochem Sci, 2014, 39(7): 310-318.
[7] Fouse SD, Nagarajan RP, Costello JF. Genome-scale DNA methylation analysis[J]. Epigenomics, 2010, 2(1): 105-117.
[8] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[9] 宁雪, 李栋, 汪大琨, 等. 脐带间充质干细胞体外衰老过程中生物学特性及基因表达谱的变化[J]. 中国实验血液学杂志, 2012, 20(2): 458-465. NING Xue, LI Dong, WANG Dakun, et al. Changes of biological characteristics and gene expression profile of umbilical cord mesenchymal stem cells during senescence in culture[J]. Journal of Experimental Hematology, 2012, 20(2):458-465.
[10] Goldberg MW. Nuclear pore complex tethers to the cytoskeleton[J]. Semin Cell Dev Biol, 2017, 68: 52-58. doi: 10.1016/j.semcdb.2017.06.017.
[11] Holzer K, Ori A, Cooke A, et al. Nucleoporin Nup155 is part of the p53 network in liver cancer[J]. Nat Commun, 2019, 10(1): 2147. doi: 10.1038/s41467-019-10133-z.
[12] Jin LZ, Lu JS, Gao JW. Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration[J]. Biosci Rep, 2018, 38(3). pii: BSR20171523. doi: 10.1042/BSR20171523.
[13] Gomes-Duarte A, Lacerda R, Menezes J, et al. eIF3: a factor for human health and disease[J]. RNA Biol, 2018, 15(1): 26-34.
[14] Wang Z, Murigneux V, Le Hir H. Transcriptome-wide modulation of splicing by the exon junction complex[J]. Genome Biol, 2014, 15(12): 551.
[15] Silver DL, Leeds KE, Hwang HW, et al. The EJC component Magoh regulates proliferation and expansion of neural crest-derived melanocytes[J]. Dev Biol, 2013, 375(2): 172-181.
[16] Kim YD, Lee J, Kim HS, et al. The unique spliceosome signature of human pluripotent stem cells is mediated by SNRPA1, SNRPD1, and PNN[J]. Stem Cell Res, 2017, 22: 43-53. doi: 10.1016/j.scr.2017.05.010.
[17] Shi Y, Simmons MN, Seki T, et al. Change in gene expression subsequent to induction of Pnn/DRS/memA: increase in p21(cip1/waf1)[J]. Oncogene, 2001, 20(30): 4007-4018.
[18] Yuan X, Zhang T, Yao F, et al. THO complex-dependent posttranscriptional control contributes to vascular smooth muscle cell fate decision[J]. Circ Res, 2018, 123(5): 538-549.
[19] Siebel C, Lendahl U. Notch signaling in development, tissue homeostasis, and disease[J]. Physiol Rev, 2017, 97(4): 1235-1294.
[20] Hans CP, Sharma N, Sen S, et al. Transcriptomics analysis reveals new insights into the roles of Notch1 signaling on macrophage polarization[J]. Sci Rep, 2019, 9(1): 7999. doi: 10.1038/s41598-019-44266-4.
[21] Choi BY, Choi Y, Park JS, et al. Inhibition of Notch1 induces population and suppressive activity of regulatory T cell in inflammatory arthritis[J]. Theranostics, 2018, 8(17): 4795-4804.
[22] Sandel DA, Liu M, Ogbonnaya N, et al. Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells[J]. Biochimie, 2018, 150: 31-36. doi: 10.1016/j.biochi.2018.04.020.
[23] Kim C, Park JM, Song Y, et al. HIF1α-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy[J]. Aging Cell, 2019, 18(2): e12909. doi: 10.1111/acel.12909.
[24] García-Heredia JM, Carnero A. NUMB and NUMBL differences in gene regulation[J]. Oncotarget, 2018, 9(10): 9219-9234.
[25] Nan J, Guan S, Jin X, et al. Down-regulation of C-terminal binding protein 2(CtBP2)inhibits proliferation, migration, and invasion of human SHSY5Y cells in vitro[J]. Neurosci Lett, 2017, 647: 104-109. doi: 10.1016/j.neulet.2017.02.006.
[26] Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy[J]. Stem Cells, 2017, 35(4): 851-858.
[27] Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. A ubiquitous membrane fusion protein alpha SNAP: a potential therapeutic target for cancer, diabetes and neurological disorders?[J]. Expert Opin Ther Targets, 2006, 10(5): 723-733.
[28] Miot S, Voituron N, Sterlin A, et al. The vesicular glutamate transporter VGLUT3 contributes to protection against neonatal hypoxic stress[J]. J Physiol, 2012, 590(20): 5183-5198.
[29] Abonyo BO, Wang P, Narasaraju TA, et al. Characterization of alpha-soluble N-ethylmaleimide-sensitive fusion attachment protein in alveolar type II cells: implications in lung surfactant secretion[J]. Am J Respir Cell Mol Biol, 2003, 29(3 Pt 1): 273-282. doi: 10.1165/rcmb.2002-0189OC.
[1] 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34.
[2] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[3] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[4] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[5] 黄平,张坤,李芳,黄国宝,延冰,肖东杰,汪运山,刘华. 脐带和脂肪源性间充质干细胞生物学特性比较[J]. 山东大学学报 (医学版), 2018, 56(3): 72-78.
[6] 王凯民,谭娟娟,严志强,李志强. Sirtuin在低氧诱导人脐带间充质干细胞增殖中的作用[J]. 山东大学学报(医学版), 2017, 55(7): 23-30.
[7] 周雪,王燕蓉,田龙,马良宏,颜贝,田稼,张帆,周岳,王红燕. 冷冻复苏过程对人精子印记基因SNRPN和GRB10DNA甲基化及表达的影响[J]. 山东大学学报(医学版), 2017, 55(1): 54-59.
[8] 刘宁,吕欣,李栋,黄志伟,刘毅,张乐玲. 人血管生成素1基因慢病毒表达载体的构建及其在脐带间充质干细胞的表达[J]. 山东大学学报(医学版), 2016, 54(12): 1-7.
[9] 王娜,陈乃耀. 脐带间充质干细胞对小胶质细胞增殖及活化的影响[J]. 山东大学学报(医学版), 2016, 54(10): 16-20.
[10] 刘娟, 韩国庆, 刘慧, 秦成勇. 人类脐带间充质干细胞抑制肝内胆管癌细胞生长的机制[J]. 山东大学学报(医学版), 2014, 52(8): 1-5.
[11] 徐佳, 宋强 . 骨髓增生异常综合征患者RASSF1A基因启动子区甲基化及基因表达的缺失[J]. 山东大学学报(医学版), 2013, 51(2): 65-69.
[12] 商笑1,崔元孝1,刘晓雨1,冯肖亚2. 人脐带间充质干细胞联合血肿抽吸术治疗大鼠脑出血的实验研究[J]. 山东大学学报(医学版), 2013, 51(10): 10-14.
[13] 陈海燕,姚树哲,张晓莹,张建平,张翠娟,张廷国. SOCS-3和3-OST-2基因甲基化在子宫内膜癌中的作用及其临床病理意义[J]. 山东大学学报(医学版), 2013, 51(06): 75-80.
[14] 郭晓宇1,姜燕2,邢召全3,郭兆新3, 房志卿3, 刘照旭1,3. DNA甲基化酶抑制剂对前列腺癌中XAF1 mRNA表达的影响[J]. 山东大学学报(医学版), 2012, 50(12): 94-.
[15] 卢菲, 刘传方,马道新,刘彦平,孔海丽,张晶晶. 5-氮-2′-脱氧胞苷对RPMI8226细胞增殖、凋亡及SOCS-1基因表达的影响[J]. 山东大学学报(医学版), 2010, 48(4): 45-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!