您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 84-93.doi: 10.6040/j.issn.1671-7554.0.2023.0460

• 临床医学 • 上一篇    下一篇

西红花苷对椎间盘退变的保护作用

刘金波,刘凯文,向崇鑫,程雷   

  1. 山东大学齐鲁医院骨科, 山东 济南 250012
  • 收稿日期:2023-05-30 发布日期:2023-10-10
  • 通讯作者: 程雷. E-mail:chenglei@email.sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2022MH019)

Protective effects of crocin on intervertebral disc degeneration

LIU Jinbo, LIU Kaiwen, XIANG Chongxin, CHENG Lei   

  1. Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2023-05-30 Published:2023-10-10

摘要: 目的 探讨西红花苷对椎间盘退变的治疗效果和作用机制。 方法 将收集的人类髓核组织Pfirrmann II级样本分成两部分,一部分提取髓核细胞并培养,根据培养基的成分,将髓核细胞分为4组,包括空白对照组、肿瘤坏死因子α(TNF-α)刺激组、西红花苷低浓度治疗组(10 μg/mL)以及西红花苷高浓度治疗组(40 μg/mL)。培养24 h后,采用实时定量 PCR检测4组髓核细胞中炎症因子和代谢标志物的mRNA表达水平。培养0、15、30 min和48 h后,采用Western blotting 检测4组髓核细胞中炎症因子、代谢标志物、凋亡标志物以及核因子活化B细胞κ轻链增强子(NF-κB)信号通路关键蛋白p-P65的蛋白表达水平。采用双荧光素酶报告基因检测西红花苷对NF-κB信号通路的作用效果。另一部分髓核组织进行离体培养,根据培养基不同,分为空白对照组、TNF-α刺激组以及西红花苷治疗组(40 μg/mL)。使用免疫组化检测各组髓核组织中炎症因子以及细胞代谢标物的蛋白表达水平。 结果 实时定量 PCR检测与Western blotting 检测结果显示,与空白对照组相比,TNF-α刺激组髓核细胞的炎症反应及细胞外基质降解加剧,促炎因子诱导型一氧化氮合酶、环氧化酶-2、去整合素和金属蛋白酶-5及基质金属蛋白酶13的基因转录与蛋白表达水平明显升高(P<0.05),而软骨可聚蛋白多糖与II型胶原蛋白的基因转录与蛋白表达水平明显下降(P<0.05)。同时Western blotting 检测结果也显示,与空白对照组相比,TNF-α刺激组髓核细胞的抗凋亡因子B淋巴细胞瘤-2基因(Bcl-2)的蛋白表达水平明显下降(P<0.001),而促凋亡因子中的Bcl-2相关X蛋白(P=0.004)和活化的天冬氨酸特异性半胱氨酸蛋白酶的蛋白表达水平明显升高(P=0.005)。而在10 μg/mL和40 μg/mL的西红花苷治疗组中上述由TNF-α所诱导的变化均被明显抑制(P<0.05)。此外,在NF-κB信号通路的实验中,与空白对照组相比,TNF-α刺激组中p-P65的蛋白表达水平明显升高(P<0.05),而在10 μg/mL和40 μg/mL的西红花苷治疗组中p-P65的蛋白表达水平均明显下降(P<0.05),并且在治疗时长15、30 min的西红花苷组中p-P65的蛋白表达水平均明显下降(P<0.05)。同时在双荧光素酶报告基因检测中,相较于空白组,TNF-α刺激组的荧光强度增加(P<0.001),而经过西红花苷治疗后,荧光强度明显下降(P=0.006)。 结论 西红花苷可抑制髓核细胞的炎症反应、细胞外基质降解及细胞凋亡, NF-κB信号通路在西红花苷抑制椎间盘退变中发挥重要作用。

关键词: 椎间盘退变, 西红花苷, 肿瘤坏死因子α, 炎症, NF-κB信号通路, 细胞凋亡

Abstract: Objective To investigate the therapeutic effects and possible mechanism of crocin on intervertebral disc degeneration(IVDD). Methods Human nucleus pulposus tissue Pfirrmann II samples were divided into two parts. One part was used to extract nucleus pulposus cells. According to the composition of the culture medium, the cells were divided into 4 groups, including blank control group, tumor necrosis factor α(TNF-α)stimulation group, low-concentration of crocin treatment group(10 μg/mL)and high-concentration of crocin treatment group(40 μg/mL). After 24 h of incubation, the mRNA expressions of inflammatory factors and metabolic markers in the 4 groups were measured with real-time quantitative PCR. After 0 min, 15 min, 30 min and 24 h of incubation, the protein expressions of inflammatory factors, metabolic markers, apoptotic markers and p-P65, a key protein of the nuclear factor-activated B-cell κ light chain enhancer(NF-κB)signaling pathway, were measured with Western blotting. The effects of crocin on the NF-κB signaling pathway was determined with dual luciferase reporter gene assay. Another part of the samples was cultured in vitro and divided into blank control group, TNF-α stimulation group and crocin treatment group(40 μg/mL). The protein expressions of inflammatory factors and cellular metabolic markers were detected with immunohistochemistry. Results The results of real-time quantitative PCR and Western blotting showed that the inflammatory response and extracellular matrix degradation in the TNF-α stimulation group intensified, and the gene transcription and protein expression levels of inducible nitric oxide synthase(iNOS), cyclo-oxygenase-2, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTs-5), and matrix metalloproteinase 13(MMP-13)were elevated compared with those in the blank control group(P<0.05), while the gene transcription and protein expressions of aggrecan and collagen-2 were significantly decreased(P<0.05). Western blotting also showed that the protein expression of anti-apoptotic factor B lymphoblastoma-2 gene(Bcl-2)in the TNF-α stimulation group was significantly decreased(P<0.001)compared to the blank control group, while the protein expressions of Bcl-2-related X protein(P=0.004)and cleaved-caspase 3 were significantly higher(P=0.005). In contrast, the above changes induced by TNF-α were significantly suppressed in both the 10 μg/mL and 40 μg/mL crocin treatment groups(P<0.05). In addition, the protein expression of p-P65 was significantly increased in the TNF-α stimulation group compared with the blank control group(P<0.05), whereas it was significantly decreased in the 10 μg/mL and 40 μg/mL crocin treatment groups(P<0.05), and significantly suppressed in the 15 min and 30 min groups(P<0.05). The dual luciferase reporter gene assay showed that the fluorescence intensity increased in the TNF-α stimulation group compared with the blank group(P<0.001), and significantly decreased after crocin treatment(P=0.006). Conclusion Crocin can inhibit the inflammatory response, extracellular matrix degradation and apoptosis of nucleus pulposus cells, and the NF-κB signaling pathway plays an important role in the inhibition of IVDD by crocin.

Key words: Intervertebral disc degeneration, Crocin, Tumor necrosis factor α, Inflammation, NF-κB signaling pathway, Apoptosis

中图分类号: 

  • R681
[1] Herger N, Bermudez-Lekerika P, Farshad M, et al. Should degenerated intervertebral discs of patients with modic type 1 changes be treated with mesenchymal stem cells? [J]. Int J Mol Sci, 2022, 23(5): 2721. doi: 10.3390/ijms23052721.
[2] Liu K, Wei J, Li G, et al. Fexofenadine protects against intervertebral disc degeneration through TNF signaling [J]. Front Cell Dev Biol, 2021, 9: 687024. doi:10.3389/fcell.2021.687024.
[3] Feise RJ, Mathieson S, Kessler RS, et al. Benefits and harms of treatments for chronic nonspecific low back pain without radiculopathy: systematic review and meta-analysis [J]. Spine J, 2023, 23(5): 629-641.
[4] Chen S, Lei L, Li Z, et al. Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation [J]. Exp Mol Med, 2022, 54(4): 518-530.
[5] Knezevic NN, Candido KD, Vlaeyen JWS, et al. Low back pain [J]. The Lancet, 2021, 398(10294): 78-92.
[6] Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration [J]. Osteoarthritis Cartilage, 2021, 29(6): 793-801.
[7] Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines [J]. Semin Immunol, 2014,26(3): 253-266.
[8] 王庆石, 陈允震, 刘海春, 等. 髓核细胞分泌的炎症因子对后纵韧带成纤维细胞增殖与成骨能力的影响[J]. 山东大学学报(医学版), 2016, 54(6): 22-26. WANG Qingshi, CHEN Yunzhen, LIU Haichun, et al. Effects of inflammatory factors secreted by myeloid cells on the proliferation and osteogenic capacity of posterior longitudinal ligament fibroblasts [J]. Journal of Shandong University(Medical Edition), 2016, 54(6): 22-26.
[9] Cao X, Wang X, Rong K, et al. Specific PFKFB3 inhibitor memorably ameliorates intervertebral disc degeneration via inhibiting NF-κB and MAPK signaling pathway and reprogramming of energy metabolism of nucleus pulposus cells [J]. Oxid Med Cell Longev, 2022, 2022: 7548145. doi: 10.1155/2022/7548145.
[10] Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: a comprehensive review [J]. Phytotherapy research: PTR, 2022, 36(10): 3859-3884.
[11] Brás JP, Bravo J, Freitas J, et al. TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity [J]. Cell Death Dis, 2020, 11(6): 415. doi: 10.1038/s41419-020-2626-6.
[12] Bakshi HA, Quinn GA, Nasef MM, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways [J]. Cells, 2022, 11(9): 1502. doi: 10.3390/cells11091502.
[13] Hayden JA, Ellis J, Ogilvie R, et al. Exercise therapy for chronic low back pain [J]. Cochrane Database Syst Rev, 2021,9(9): CD009790. doi: 10.1002/14651858.CD000335.
[14] Sun K, Jiang J, Wang Y, et al. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration [J]. Ageing Res Rev, 2022, 81: 101733. doi: 10.1016/j.arr.2022.101733.
[15] Tao S, Shen Z, Chen J, et al. Red light-mediated photoredox catalysis triggers nitric oxide release for treatment of cutibacterium acne induced intervertebral disc degeneration [J]. ACS Nano, 2022, 16(12): 20376-20388.
[16] Risbud M, Shapiro I. Role of cytokines in intervertebral disc degeneration: pain and disc content [J]. Nat Rev Rheumatol, 2014, 10(1): 44-56.
[17] Wang Y, Che M, Xin J, et al. The role of IL-1β and TNF-α in intervertebral disc degeneration [J]. Biomed Pharmacother, 2020, 131: 110660. doi: 10.1016/j.biopha.2020.110660.
[18] 韩宇, 谢国勇, 李冉, 等. 西红花苷药理活性的研究进展[J]. 现代药物与临床, 2017, 32(9): 1806-1814. HAN Yu, XIE Guoyong, LI Ran, et al. Advances in the pharmacological activity of saffron glucosides [J]. Modern Drugs and Clinics, 2017, 32(9): 1806-1814.
[19] Vafaei S, Wu X, Tu J, et al. The effects of crocin on bone and cartilage diseases [J]. Front Pharmacol, 2021, 12: 830331. doi: 10.3389/fphar.2021.830331.
[20] Hashemzaei M, Mamoulakis C, Tsarouhas K, et al. Crocin: a fighter against inflammation and pain[J]. Food Chem Toxicol, 2020, 143:111521. doi: 10.1016/j.fct.2020.111521.
[21] 朱超, 阮狄克. 椎间盘退变机制研究进展[J]. 中国骨与关节杂志, 2022, 11(9): 700-706. ZHU Chao, RUAN Dike. Progress in the study of intervertebral disc degeneration mechanism [J]. Chinese Journal of Bone and Joint, 2022, 11(9): 700-706.
[22] Chen S, Lei L, Li Z, et al. Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation [J]. Exp Mol Med, 2022, 54(4): 518-530.
[23] Liu Y, Du J, Peng P, et al. Regulation of the inflammatory cycle by a controllable release hydrogel for eliminating postoperative inflammation after discectomy [J]. Bioact Mater, 2021, 6(1): 146-157.
[24] Tang K, Su W, Huang C, et al. Notoginsenoside R1 suppresses inflammatory response and the pyroptosis of nucleus pulposus cells via inactivating NF-κB/NLRP3 pathways [J]. International immunopharmacology, 2021, 101(Pt B): 107866. doi: 10.1016/j.intimp.2021.107866.
[25] Zhang S, Song S, Zhuang Y, et al. Role of microRNA-15a-5p/Sox9/NF-κB axis in inflammatory factors and ap optosis of murine nucleus pulposus cells in intervertebral disc degene ration [J]. Life Sci, 2021, 277: 119408. doi: 10.1016/j.lfs.2021.119408.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72.
[3] 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98.
[4] 杨晓喆,赵妍,青卉,王向东,张罗. 大气细颗粒物通过TLR4/NF-κB通路诱导鼻黏膜上皮细胞炎症反应[J]. 山东大学学报 (医学版), 2023, 61(9): 47-55.
[5] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[6] 步美玲,王金荣,冯梅,孙立锋. FOXM1在呼吸道病毒感染致哮喘小鼠急性发作中的机制[J]. 山东大学学报 (医学版), 2023, 61(6): 1-9.
[7] 赵元元,路军涛,吴小华. 人脐带间充质干细胞外泌体miR-100对多囊卵巢综合征患者颗粒细胞炎症的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 51-58.
[8] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[9] 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73.
[10] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[11] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[12] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[13] 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9.
[14] 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18.
[15] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[9] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[10] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .