您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 47-55.doi: 10.6040/j.issn.1671-7554.0.2023.0524

• 基础医学 • 上一篇    下一篇

大气细颗粒物通过TLR4/NF-κB通路诱导鼻黏膜上皮细胞炎症反应

杨晓喆1,2,赵妍1,2,青卉3,王向东1,2,3,张罗1,2,3   

  1. 1.首都医科大学附属北京同仁医院耳鼻咽喉头颈外科, 耳鼻咽喉头颈科学教育部重点实验室(首都医科大学), 北京 100730;2. 北京市耳鼻咽喉科研究所, 过敏性疾病北京实验室, 鼻病研究北京市重点实验室, 北京 100005;3. 首都医科大学附属北京同仁医院变态反应科, 北京 100730
  • 收稿日期:2023-06-17 发布日期:2023-10-10
  • 通讯作者: 张罗. E-mail:dr.luozhang@139.com 王向东. E-mail:entwxd@vip.sina.com
  • 基金资助:
    国家重点研发计划(2022YFC2504100);教育部长江学者与创新团队发展计划(IRT13082),中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-022);首都临床特色诊疗技术研究及转化应用重点项目(Z211100002921057);首都卫生发展科研专项重点攻关项目(2022-1-1091);国家自然科学基金(82101190,82171110,82000962,81970852);北京市自然科学基金(7222024);北京市卫生系统高层次公共卫生人才建设项目领军人才(领军人才-01-08,领军人才-02-09);北京市医管中心“青苗”人才计划(QML20230201)

PM2.5 induces inflammatory response in nasal epithelial cells through TLR4/NF-κB pathway

YANG Xiaozhe1,2, ZHAO Yan1,2, QING Hui3, WANG Xiangdong1,2,3, ZHANG Luo1,2,3   

  1. 1. Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery(Capital Medical University), Ministry of Education, Beijing 100730, China;
    2. Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Beijing 100005, China;
    3. Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Received:2023-06-17 Published:2023-10-10

摘要: 目的 探讨阐明TLR4/NF-κB信号通路在PM2.5诱导鼻黏膜上皮细胞炎症反应中的作用机制。 方法 参考健康人鼻黏膜上皮细胞系(HNEpCs)构建PM2.5暴露模型。暴露后提取RNA利用Illumina测序仪进行转录组分析。荧光定量PCR(qRT-PCR)分析TLR4、NFKB1、NFKB1A基因的RNA表达水平。 结果 PM2.5可引起HNEpCs毒性及转录组异常调控,导致TLR4、NFKBIAIL1B基因的异常表达,KEGG通路分析发现所参与的TLR4/NF-κB通路显著富集。qRT-PCR验证实验发现,经过PM2.5暴露后TLR4基因上调,NFKB1基因下调,与此同时抑制NF-κB的NFKB1A(NF-κB抑制因子α)显著下调,故而在一定程度上导致TLR4/NF-κB通路异常调控。 结论 本研究发现HNEpCs在PM2.5暴露后,TLR4/NF-κB通路异常调控,可能在PM2.5暴露所诱发的鼻黏膜炎症反应中起到关键作用。

关键词: 鼻黏膜上皮细胞系, 大气细颗粒物, 暴露模型, 基因异常表达, 荧光定量分析, 转录组分析, 鼻黏膜炎症

Abstract: Objective To investigate the mechanism of TLR4/NF-κB signaling pathway in the inflammatory response of nasal mucosal epithelial cells induced by fine particulate matter(PM2.5). Methods After healthy human nasal epithelial cells(HNEpCs)were exposed to PM2.5, the RNA was extracted for transcriptome analysis by Illumina sequencer. The expressions of TLR4, NFKB1 and NFKB1A were detected with quantitative real-time PCR(qRT-PCR). Results PM2.5 caused cell toxicity and abnormal regulation of transcriptome of HNEpCs, and abnormal expressions of TLR4, NFKBIA and IL1B. KEGG pathway analysis indicated that TLR4/NF-κB pathway was significantly enriched. The qRT-PCR validation experiment revealed that after PM2.5 exposure, TLR4 was up-regulated while NFKB1 was down-regulated, and NFKBIA,which inhibited NF-κB, was significantly down-regulated, thus leading to abnormal regulation of the TLR4/NF-κB pathway. Conclusion The abnormal regulation of TLR4/NF-κB in HNEpCs may play a crucial role in the nasal mucosa inflammatory response induced by PM2.5 exposure.

Key words: Nasal epithelial cell line, Fine particulate matter, Exposure model, Abnormal regulation of gene, Quantitative red-time, Transcriptome analysis, Nasal mucosa inflammation

中图分类号: 

  • R765.25
[1] Zhou MG, Wang HD, Zeng XY, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2019, 394(10204): 1145-1158. doi: 10.1016/S0140-6736(19)30427-1.
[2] Liang FC, Xiao QY, Huang KY, et al. The 17-y spatiotemporal trend of PM2.5 and its mortality burden in China [J]. Proc Natl Acad Sci USA, 2020, 117(41): 25601-25608. doi: 10.1073/pnas.1919641117.
[3] 王得翔, 季秀丽, 马德东, 等. 济南地区支气管哮喘患者经济负担及其影响因素分析[J]. 山东大学学报(医学版), 2012, 50(5): 124-128. WANG Dexiang, JI Xiuli, MA Dedong, et al. The economic burden of bronchial asthma and its related factors in Jinan [J]. Journal of Shandong University(Health Sciences), 2012, 50(5): 124-128.
[4] Mady LJ, Schwarzbach HL, Moore JA, et al. Air pollutants may be environmental risk factors in chronic rhinosinusitis disease progression [J]. Int Forum Allergy Rhinol, 2018, 8(3): 377-384.
[5] Park EJ, Roh J, Kang MS, et al. Biological responses to diesel exhaust particles(DEPs)depend on the physicochemical properties of the DEPs [J]. PLoS One, 2011, 6(10): e26749. doi: 10.1371/journal.pone.0026749.
[6] 杨似玉, 闫晓娜, 彭靖, 等. 郑州市两城区大气PM2.5中金属、类金属污染特征及健康风险评估[J]. 山东大学学报(医学版), 2021, 59(12): 70-77. doi: 10.6040/j.issn.1671-7554.0.2021.1079. YANG Siyu, YAN Xiaona, PENG Jing, et al. Pollution characteristics and health risk assessment of metals and metalloids in PM2.5 in two districts of Zhengzhou [J]. Journal of Shandong University(Health Science), 2021, 59(12): 70-77.
[7] Guo ZQ, Dong WY, Xu J, et al. T-helper type 1-T-helper type 2 shift and nasal remodeling after fine particulate matter exposure in a rat model of allergic rhinitis [J]. Am J Rhinol Allergy, 2017, 31(3): 148-155.
[8] Ogata H, Goto S, Sato K, et al. KEGG: Kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 1999, 27(1): 29-34.
[9] Gu WJ, Hou TH, Zhou HW, et al. Ferroptosis is involved in PM2.5-induced acute nasal epithelial injury via AMPK-mediated autophagy [J]. Int Immunopharmacol, 2023, 115: 109658. doi: 10.1016/j.intimp.2022.109658.
[10] Hong ZC, Guo ZQ, Zhang RX, et al. Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells [J]. Tohoku J Exp Med, 2016, 239(2): 117-125.
[11] Xian M, Ma SY, Wang KJ, et al. Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells [J]. Allergy Asthma Immunol Res, 2020, 12(1): 56-71.
[12] Xian M, Wang KJ, Lou HF, et al. Short-term haze exposure predisposes healthy volunteers to nasal inflammation [J]. Allergy Asthma Immunol Res, 2019, 11(5): 632-643.
[13] Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis [J]. Nat Immunol, 2013, 14(7): 668-675.
[14] Osterlund C, Grönlund H, Polovic N, et al. The non-proteolytic house dust mite allergen Der p 2 induce NF-kappaB and MAPK dependent activation of bronchial epithelial cells [J]. Clin Exp Allergy, 2009, 39(8): 1199-1208.
[15] Choi HJ, Park SY, Cho JH, et al. The TLR4-associated phospholipase D1 activation is crucial for Der f 2-induced IL-13 production [J]. Allergy, 2015, 70(12): 1569-1579.
[16] Sun Y, Zhou B, Wang CS, et al. Biofilm formation and Toll-like receptor 2, Toll-like receptor 4, and NF-kappaB expression in sinus tissues of patients with chronic rhinosinusitis [J]. Am J Rhinol Allergy, 2012, 26(2): 104-109.
[17] Zhang Q, Wang CS, Han DM, et al. Differential expression of Toll-like receptor pathway genes in chronic rhinosinusitis with or without nasal polyps [J]. Acta Otolaryngol, 2013, 133(2): 165-173.
[18] Shimizu S, Kouzaki H, Kato T, et al. HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells [J]. Am J Rhinol Allergy, 2016, 30(3): 167-172.
[19] Dai PY, Shen D, Shen JK, et al. The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4 - NFκB in A549 cell exposed to layer house particulate matter 2.5(PM2.5)[J]. Chemosphere, 2019, 235: 1134-1145. doi: 10.1016/j.chemosphere.2019.07.002.
[20] Becker S, Dailey L, Soukup JM, et al. TLR-2 is involved in airway epithelial cell response to air pollution particles [J]. Toxicol Appl Pharmacol, 2005, 203(1): 45-52.
[21] Wang HT, Song LY, Ju WH, et al. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice [J]. Sci Rep, 2017, 7: 44256. doi:10.1038/srep44256.
[22] Wang X, Zhao CY, Ji WJ, et al. Relationship of TLR2, TLR4 and tissue remodeling in chronic rhinosinusitis [J]. Int J Clin Exp Pathol, 2015, 8(2): 1199-1212.
[23] Taziki MH, Azarhoush R, Taziki MM, et al. Correlation between HMGB1 and TLR4 expression in sinonasal mucosa in patients with chronic rhinosinusitis [J]. Ear Nose Throat J, 2019, 98(10): 599-605.
[24] Qing H, Wang XD, Zhang N, et al. The effect of fine particulate matter on the inflammatory responses in human upper airway mucosa [J]. Am J Respir Crit Care Med, 2019, 200(10): 1315-1318.
[25] Qiu FF, Liang CL, Liu HZ, et al. Impacts of cigarette smoking on immune responsiveness: up and down or upside down? [J]. Oncotarget, 2017, 8(1): 268-284.
[26] Zhao C, Liao JP, Chu WL, et al. Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice [J]. Inhal Toxicol, 2012, 24(13): 918-927.
[27] Shoenfelt J, Mitkus RJ, Zeisler R, et al. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter [J]. J Leukoc Biol, 2009, 86(2): 303-312.
[1] 王丽珩,彭秀苗,张迎建,单冰,曹萌,崔亮亮. 2016~2020年济南市两城区大气PM2.5中金属元素浓度特征及慢性健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[3] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[4] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[8] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[9] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .