您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (7): 19-26.doi: 10.6040/j.issn.1671-7554.0.2022.1258

• 基础医学 • 上一篇    

补充多种微量元素对高糖饮食大鼠的保护作用

祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝   

  1. 山东大学齐鲁医学院公共卫生学院理化检验学系, 山东 济南 250012
  • 发布日期:2023-07-04
  • 通讯作者: 高希宝. E-mail:chem@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81373048);山东省重点研发计划(公益类科技攻关)(2019GSF107002)

Protective effects of supplementing various trace elements on rats with high-sucrose diet

QI Shaojun, TANG Yanjin, ZHANG Zhengduo, WU Hong, ZHANG Jiacheng, QIN Chuan, LIU Rui, GAO Xibao   

  1. Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
  • Published:2023-07-04

摘要: 目的 观察联合补充多种微量元素对高糖饮食大鼠抗炎和抗氧化功能的影响。 方法 40只雄性Wistar大鼠随机分为空白组、微量元素(TE)组、高糖饮食(HSD)组和高糖饮食+微量元素(HSD+TE)组,每组10只。喂养的同时,每天通过灌胃给予各组大鼠生理盐水或11种微量元素混合溶液(硼、钒、铬、锰、铁、钴、铜、锌、硒、锶和钼),20周后评估大鼠体质量、组织质量、血清葡萄糖含量、氧化应激和炎症标志物的变化。 结果 高糖饮食导致大鼠体质量和血糖水平明显增加(P<0.05),并显著引起氧化应激和炎症反应(P<0.05)。此外,微量元素的补充显著抑制由于微量元素缺乏和高糖饮食诱发的白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的升高(P<0.05),但促进了白细胞介素-4(IL-4)和白细胞介素-10(IL-10)的分泌(P<0.05)。其次,补充微量元素抑制高糖饮食大鼠血清及脾脏过氧化氢酶(CAT)、总超氧化物歧化酶(T-SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性的下降(P<0.05),减少丙二醛(MDA)的产生(P<0.05),并提高高糖饮食大鼠血清谷胱甘肽还原酶(GR)和总抗氧化能力(T-AOC)(P<0.05)。维持微量元素的平衡可以防止高糖饮食引起的大鼠体质量增加(P<0.05)。 结论 对高糖饮食大鼠同时补充多种微量元素对预防糖尿病有较好的效果,可有效控制血糖水平的升高,增强抗氧化能力,减轻炎症反应,预防高糖饮食引起大鼠体质量上升。

关键词: 微量元素, 高糖饮食, 氧化应激, 炎症细胞因子, 大鼠

Abstract: Objective To observe the effects of supplementation of multiple trace elements on the anti-inflammatory and antioxidant functions in rats with high-sucrose diet. Methods A total of 40 male Wistar rats were randomly divided into blank group, trace elements(TE)group, high-sucrose diet(HSD)group and high-sucrose diet + trace elements(HSD+TE)group, with 10 rats in each group. Normal saline or a mixture of 11 trace elements(B, V, Cr, Mn, Fe, Co, Cu, Zn, Se, Sr and Mo)was given daily by gavage to the rats. After 20 weeks, the changes of body weight, tissue weight, serum glucose content, oxidative stress and inflammatory markers were measured. Results High-sucrose diet induced a noticeable increase in body weight and serum glucose content(P<0.05), and significantly caused oxidative stress and inflammation(P<0.05). In addition, the supplementation of trace elements significantly inhibited the increase of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)induced by trace element deficiency and high-sucrose diet(P<0.05), but promoted the secretion of interleukin-4(IL-4)and interleukin-10(IL-10)(P<0.05). The supplementation of trace elements inhibited the decrease of the activities of catalase(CAT), total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)in serum and spleen(P<0.05), reduced the production of malondialdehyde(MDA)(P<0.05), and increased serum glutathione reductase(GR)and total antioxidant capacity(T-AOC)in serum of rats with high-sucrose diet(P<0.05). Maintaining the balance of trace elements prevented weight gain caused by high-sucrose diet(P<0.05). Conclusion The supplementation of multiple trace elements to rats on a high-sucrose diet has a good effect on the prevention of diabetes, which can effectively control the increase of blood glucose level, enhance the antioxidant capacity, reduce the inflammatory response and prevent the weight gain.

Key words: Trace elements, High-sucrose diet, Oxidative stress, Inflammatory factor, Rat

中图分类号: 

  • R151
[1] Paglia L. The sweet danger of added sugars [J]. Eur J Paediatr Dent, 2019, 20(2): 89.
[2] Goncalves MD, Lu C, Tutnauer J, et al. High-fructose corn syrup enhances intestinal tumor growth in mice [J]. Science, 2019, 363(6433): 1345-1349.
[3] Zhang D, Jin W, Wu R, et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation [J]. Immunity, 2019, 51(4): 671-681.
[4] Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults [J]. Circulation, 2019, 139(18): 2113-2125.
[5] Tako E. Dietary trace minerals [J]. Nutrients, 2019, 11(11): E2823.
[6] Zoroddu MA, Aaseth J, Crisponi G, et al. The essential metals for humans: a brief overview [J]. J Inorg Biochem, 2019, 195: 120-129. doi:10.1016/j.jinorgbio.2019.03.013.
[7] Mwiti Kibiti C, Jide Afolayan A. The biochemical role of macro and micro-minerals in the management of diabetes mellitus and its associated complications: a review [J]. Int J Vitam Nutr Res, 2015, 85(1/2): 88-103.
[8] Sundaram B, Singhal K, Sandhir R. Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes [J]. Biofactors, 2012, 38(1): 59-68.
[9] Yildirim O, Büyükbingöl Z. Effects of supplementation with a combination of cobalt and ascorbic acid on antioxidant enzymes and lipid peroxidation levels in streptozocin-diabetic rat liver [J]. Biol Trace Elem Res, 2002, 90(1/2/3): 143-154.
[10] Siddiqi SM, Sun C, Wu X, et al. The correlation between dietary selenium intake and type 2 diabetes: a cross-sectional population-based study on north Chinese adults [J]. Biomed Res Int, 2020, 2020: 8058463. doi:10.1155/2020/8058463.
[11] Chen L, Guo Q, Wang Q, et al. Association between plasma strontium, a bone-seeking element, and type 2 diabetes mellitus [J]. Clin Nutr, 2020, 39(7): 2151-2157.
[12] 程义勇. 《中国居民膳食营养素参考摄入量》2013修订版简介[J]. 营养学报, 2014, 36(4): 313-317.
[13] Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes [J]. Lancet, 2017, 389(10085): 2239-2251.
[14] Welsh JA, Sharma A, Abramson JL, et al. Caloric sweetener consumption and dyslipidemia among US adults [J]. JAMA, 2010, 303(15): 1490-1497.
[15] Rospond B, Krakowska A, Kro sniak M, et al. The influence of high-fat and high-sucrose feeding regimes on organ weight, body weight, and serum concentration of bioelements in rats [J]. J Trace Elem Med Biol, 2022, 73: 127020. doi:10.1016/j.jtemb.2022.127020.
[16] Zebrowska E, Chabowski A, Zalewska A, et al. High-sugar diet disrupts hypothalamic but not cerebral cortex redox homeostasis [J]. Nutrients, 2020, 12(10): 3181.
[17] Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression [J]. Cell Mol Life Sci, 2016, 73(2): 377-392.
[18] Shi Z, Wu X, Santos Rocha C, et al. Short-term western diet intake promotes il-23?mediated skin and joint inflammation accompanied by changes to the gut microbiota in mice [J]. J Invest Dermatol, 2021, 141(7): 1780-1791.
[19] Chen F, Xiong H, Wang J, et al. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats [J]. J Ethnopharmacol, 2013, 149(3): 729-736.
[20] Finke H, Winkelbeiner N, Lossow K, et al. Effects of a cumulative, suboptimal supply of multiple trace elements in mice: trace element status, genomic stability, inflammation, and epigenetics [J]. Mol Nutr Food Res, 2020, 64(16): e2000325.
[21] Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation [J]. Curr Diab Rep, 2013, 13(3): 435-444.
[22] Sahin K, Orhan C, Tuzcu M, et al. Ingested capsaicinoids can prevent low-fat-high-carbohydrate diet and high-fat diet-induced obesity by regulating the NADPH oxidase and Nrf2 pathways [J]. J Inflamm Res, 2017, 10: 161-168. doi: 10.2147/JIR.S149087.
[23] 文明明, 赵治恒, 毕洁, 等. 高糖饮食对果蝇发育和抗氧化能力的影响及其机理研究[J]. 食品工业科技, 2021, 42(21): 377-384. WEN Mingming, ZHAO Zhiheng, BI Jie, et al. Effects of high sucrose diet on the development and antioxidant capacity of Drosophila melanogaster and its mechanism [J]. Science and Technology of Food Industry, 2021, 42(21): 377-384.
[24] 石磊. 高压氧对危重颅脑外伤患者脑部损伤及血清CAT、T-AOC、ROS、LHP水平的影响[J]. 现代医学与健康研究电子杂志, 2021, 5(2): 72-74.
[25] 范修敬, 陈新豪, 古杰超. 血清谷胱甘肽还原酶与2型糖尿病的关系探究[J]. 中国医学创新, 2021, 18(16): 12-15. FAN Xiujing, CHEN Xinhao, GU Jiechao. Investigation on the relationship between serum glutathione reductase and type 2 diabetes mellitus [J]. Medical Innovation of China, 2021, 18(16): 12-15.
[26] Maritim AC, Sanders RA, Watkins III JB. Diabetes, oxidative stress, and antioxidants: a review [J]. J Biochem Mol Toxicol, 2003, 17(1): 24-38.
[27] Shi Y, Zou Y, Shen Z, et al. Trace elements, PPARs, and metabolic syndrome [J]. Int J Mol Sci, 2020, 21(7): 2612.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[3] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[4] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[5] 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9.
[6] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[7] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[8] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[9] 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23.
[10] 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21.
[11] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
[12] 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60.
[13] 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24.
[14] 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62.
[15] 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!