山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (2): 14-21.doi: 10.6040/j.issn.1671-7554.0.2021.1290
赵慧文,许琳,单姗,赵秀兰
ZHAO Huiwen, XU Lin, SHAN Shan, ZHAO Xiulan
摘要: 目的 观察牛磺酸对1-溴丙烷致大鼠中枢神经系统功能损伤的保护作用。 方法 SPF级成年雄性Wistar大鼠60只,按体质量随机分为空白对照组、1-溴丙烷染毒组、低剂量牛磺酸干预组、高剂量牛磺酸干预组、牛磺酸对照组。1-溴丙烷采用玉米油稀释,经口染毒,剂量800 mg/kg,染毒15~20 d,采用Morris水迷宫检测大鼠认知功能。实验21 d处死动物,迅速分离大脑皮层及海马,采用高效液相色谱法检测脑组织中牛磺酸含量,采用Western blotting法检测线粒体氧化磷酸化蛋白复合体及凋亡相关蛋白的表达。 结果 Morris水迷宫结果显示,与空白对照组相比,1-溴丙烷染毒组大鼠逃避潜伏期延长,穿越平台次数明显降低(P<0.01);与1-溴丙烷染毒组相比,低剂量和高剂量牛磺酸干预组逃避潜伏期明显缩短,穿越平台次数增加(P<0.01)。HPLC结果显示,与空白对照组相比,1-溴丙烷染毒组大鼠皮层和海马牛磺酸含量明显降低(P<0.001,P<0.05),与1-溴丙烷染毒组相比,低剂量和高剂量牛磺酸干预组大鼠脑组织牛磺酸含量明显升高(P<0.001,P<0.01)。与空白对照组相比,1-溴丙烷染毒组大鼠脑组织中线粒体氧化磷酸化蛋白复合体和Bcl-2表达明显降低(P<0.01,P<0.05),BAX和cleaved caspase-3表达升高(P<0.05,P<0.01);低剂量和高剂量牛磺酸干预组大鼠脑组织线粒体氧化磷酸化蛋白复合体及凋亡相关蛋白的变化趋势有明显逆转,与1-溴丙烷染毒组相比,差异均有统计学意义(P<0.01,P<0.05,P<0.001)。 结论 补充牛磺酸可抑制1-溴丙烷诱导大鼠大脑的神经细胞凋亡,维持大脑线粒体正常功能,进而改善1-溴丙烷致大鼠的认知功能障碍。
中图分类号:
[1] 张意. 1-溴丙烷神经毒性作用机制及生物标志研究进展[J]. 卫生研究, 2017, 46(3): 505-508. [2] Wang TH, Wu ML, Wu YH, et al. Neurotoxicity associated with exposure to 1-bromopropane in golf-club cleansing workers [J]. Clin Toxicol, 2015, 53(8): 823-826. [3] 李卫华, 王强毅, 市原学, 等. 1-溴丙烷对接触工人神经毒性的剂量-效应关系[J]. 中华劳动卫生职业病杂志, 2010, 28(7): 488-493. LI Weihua, WANG Qiangyi, ICHIHARA Gaku, et al. Exposure to 1-bromopropane causes dose-dependent neurological abnormalities in workers [J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2010, 28(7): 488-493. [4] Kumari N, Prentice H, Wu JY. Taurine and its neuroprotective role [J]. Adv Exp Med Biol, 2013, 775: 19-27. doi:10.1007/978-1-4614-6130-2_2. [5] Wu JY, Wu H, Jin Y, et al. Mechanism of neuroprotective function of taurine [J]. Adv Exp Med Biol, 2009, 643: 169-179. doi: 10.1007/978-0-387-75681-3_17. [6] Hernández-Benítez R, Pasantes-Morales H, Salda(~overn)a IT, et al. Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells [J]. J Neurosci Res, 2010, 88(8): 1673-1681. [7] El Idrissi A, Shen CH, L'amoreaux WJ. Neuroprotective role of taurine during aging [J]. Amino Acids, 2013, 45(4): 735-750. [8] Wu JY, Prentice H. Role of taurine in the central nervous system [J]. J Biomed Sci, 2010, 17(Suppl 1): S1. [9] Lambert IH, Kristensen DM, Holm JB, et al. Physiological role of taurine: from organism to organelle [J]. Acta Physiol(Oxf), 2015, 213(1): 191-212. [10] Vitvitsky V, Garg SK, Banerjee R. Taurine biosynthesis by neurons and astrocytes [J]. J Biol Chem, 2011, 286(37): 32002-32010. [11] Oja SS, Saransaari P. Open questions concerning taurine with emphasis on the brain [J]. Adv Exp Med Biol, 2015, 803: 409-413. doi: 10.1007/978-3-319-15126-7_31. [12] Jang H, Lee S, Choi SL, et al. Taurine directly binds to oligomeric amyloid-β and recovers cognitive deficits in Alzheimer model mice [J]. Adv Exp Med Biol, 2017, 975(Pt 1): 233-241. doi: 10.1007/978-94-024-1079-2_21. [13] 李新娟,葛治国,李东亮,等.牛磺酸对大鼠脑损伤后认知功能及海马凋亡相关蛋白表达的影响[J]. 新乡医学院学报, 2006, 23(6): 569-571. LI Xinjuan, GE Zhiguo, LI Dongliang, et al. Effect of taurine on the cognitive function and the expression of protein related apoptosis in hippocampus after diffuse brain injury in rats [J]. Journal of Xinxiang Medical College, 2006, 23(6): 569-571. [14] Wang K, Shi Y, Liu W, et al. Taurine improves neuron injuries and cognitive impairment in a mouse Parkinsons disease model through inhibition of microglial activation [J]. Neurotoxicology, 2021, 83: 129-136. doi: 10.1016/j.neuro.2021.01.002. [15] Jakaria M, Azam S, Haque ME, et al. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms [J]. Redox Biol, 2019, 24: 101223. doi: 10.1016/j.redox.2019. [16] Xu Y, Wang S, Jiang L, et al. Identify melatonin as a novel therapeutic reagent in the treatment of 1-bromopropane(1-BP)intoxication [J]. Medicine(Baltimore), 2016, 95(3): e2203. [17] Suo JN, Zhang CL, Wang P, et al. Allyl sulfide counteracts 1-bromopropane-induced neurotoxicity by inhibiting neuroinflammation and oxidative stress [J]. Toxicol Sci, 2019, 167(2): 397-407. [18] Yang G, Xiang Y, Zhou W, et al. 1-Bromopropane-induced apoptosis in OVCAR-3 cells via oxidative stress and inactivation of Nrf2 [J]. Toxicol Ind Health, 2021, 37(2): 59-67. [19] Castellanos E, Lanning NJ. Phosphorylation of OXPHOS machinery subunits: functional implications in cell biology and disease [J]. Yale J Biol Med, 2019, 92(3): 523-531. [20] 徐建兴. 呼吸链的电子漏路径和线粒体的超氧自由基代谢及其生物学意义[J]. 基础医学与临床, 2001, 21(5): 389-394. XU Jianxing. Electronleak of respiratory chain and the metabolism of superoxide anion in mitochondria [J]. Basic Medical Sciences and Clinics, 2001, 21(5): 389-394. [21] Cheng L, Chen L, Wei X, et al. NOD2 promotes dopaminergic degeneration regulated by NADPH oxidase 2 in 6-hydroxydopamine model of Parkinson's disease [J]. J Neuroinflammation, 2018, 15(1): 243. [22] Han Z, Gao LY, Lin YH, et al. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases [J]. Eur J Pharmacol, 2016, 777: 129-135. doi: 10.1016/j.ejphar.2016.03.006. [23] Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production [J]. Amino Acids, 2012, 42(6): 2223-2232. [24] Baydas G, Reiter RJ, Akbulut M, et al. Melatonin inhibits neural apoptosis induced by homocysteine in Hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels [J]. Neuroscience, 2005, 135(3): 879-886. [25] Yalçinkaya S, Unlüçerçi Y, Giri?瘙塂 M, et al. Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine [J]. Nutrition, 2009, 25(4): 436-444. [26] Leon R, Wu H, Jin Y, et al. Protective function of taurine in glutamate-induced apoptosis in cultured neurons [J]. J Neurosci Res, 2009, 87(5): 1185-1194. [27] Taranukhin AG, Taranukhina EY, Saransaari P, et al. Neuroprotection by taurine in ethanol-induced apoptosis in the developing cerebellum J]. J Biomed Sci, 2010, 17(Suppl 1): S12. [28] Niu XL, Zheng SM, Liu HT, et al. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury [J]. Mol Med Rep, 2018, 18(5): 4516-4522. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-. |
[3] | 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32. |
[4] | 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-. |
[5] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[6] | 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122. |
[7] | 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23. |
[8] | 于书卷,王美娟,陈丽,曹英娟,吕晓燕,刘雪燕,林鹏,颜景政. 老年2型糖尿病患者轻度认知功能障碍的影响因素[J]. 山东大学学报 (医学版), 2022, 60(11): 108-112. |
[9] | 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60. |
[10] | 南莉,杨凯转,张一帆. 室内照明白色发光二极管对大鼠视网膜的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 56-62. |
[11] | 王海鹏,邹娟娟,高春苗,王孝,王岩,李延忠. OSAHS慢性间歇性低氧大鼠模型的建立及意义[J]. 山东大学学报 (医学版), 2021, 59(2): 7-13. |
[12] | 孔文程,徐广润,贾俊丽,崔新宇. 脑腱黄瘤病1例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(11): 72-75. |
[13] | 张霁娟,于汉成,王蓝,陈诺,崔书萌,高希宝. 高脂膳食、硒对大鼠抗氧化功能的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 95-101. |
[14] | 丁华琳,李扬扬,于丰源,战伟伟,于苏国. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报 (医学版), 2020, 58(3): 75-80. |
[15] | 何天齐,李敏,王雪楠,王亚楠,李玉川,孙爽,赵海龙,王皓,陈大典,朱梅佳,王晓军,王敏,李秀华. 腺相关病毒在大鼠丘脑纹状体通路中的应用[J]. 山东大学学报 (医学版), 2020, 58(3): 65-74. |
|