您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (2): 7-13.doi: 10.6040/j.issn.1671-7554.0.2020.1469

• 基础医学 • 上一篇    下一篇

OSAHS慢性间歇性低氧大鼠模型的建立及意义

王海鹏1,邹娟娟2,高春苗1,王孝1,王岩2,李延忠2   

  1. 1.淄博市中心医院耳鼻咽喉头颈外科, 山东 淄博 255036;2. 山东大学齐鲁医院耳鼻咽喉科, 国家卫生健康委员会耳鼻咽喉科学重点实验室(山东大学), 山东 济南 250012
  • 发布日期:2021-03-05
  • 通讯作者: 李延忠. E-mail:liyanzhong@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81170903);山东省自然科学基金(ZR2018MH017)

Construction and significance of a rat model of OSAHS with chronic intermittent hypoxia

WANG Haipeng1, ZOU Juanjuan2, GAO Chunmiao1, WANG Xiao1, WANG Yan2, LI Yanzhong2   

  1. 1. Department of Otorhinolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo 255036, Shandong, China;
    2. Department of Otorhinolaryngology, Qilu Hospital Cheeloo College of Medicine, Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology(Shandong University), Jinan 250012, Shandong, China
  • Published:2021-03-05

摘要: 目的 建立阻塞性睡眠呼吸暂停低通气综合征(OSAHS)慢性间歇性低氧大鼠模型。 方法 采用彩色触摸屏、可编程逻辑控制器(PLC)自动控制和自动数据采集监测系统,制造建立实验模型所需要的装备。低氧舱控制装置的主体设备主要由以下三个部分组成:主机部分、低氧舱体和气路控制部分。采用随机数字表法将30只大鼠分成常氧对照组(CON组)和慢性间歇性低氧模型组(CIH组),每组15只。普通喂养,9周后解剖取肝脏标本,进行油红“O”染色、苏木精-伊红染色、透射电镜观察。 结果 形态学改变:CIH组的苏木精-伊红HE染色可见脂质积聚、脂肪空泡形成,导致肝细胞脂肪变性;电镜下超微结构见大量簇状脂滴、自噬小体和溶酶体大量出现,粗面内质网糖原的灶性聚积,毛细胆管微绒毛变得稀疏。CON组此征象较少。此模型下CIH组大鼠肝细胞形态学明显改变。脂质油红“O”染色结果:CON组与CIH组IOD/Area(有效统计区域面积内的累计光密度平均值)差异有统计学意义(P<0.001),检验统计量=-56.308,P<0.001,CIH组肝细胞脂质明显染红。 结论 OSAHS慢性间歇性低氧大鼠模型建立成功,可靠有效,符合OSAHS的病理生理特点,为进一步研究大鼠各组织器官功能异常的发生机制及可能有关药物的治疗作用奠定了坚实的基础。

关键词: 睡眠呼吸暂停综合征, 低氧, 动物, 模型, 大鼠

Abstract: Objective To construct a rat model of obstructive sleep apnea hypopnea syndrome(OSAHS)with chronic intermittent hypoxia. Methods A color touch screen, a programmable logic controller(PLC)automatic control, and an automated data acquisition and monitoring system were used to assemble the equipment needed to construct the experimental model. The hypoxic chamber was composed of the main engine, the hypoxic chamber and the gas path control. A total of 30 rats were randomly divided into two groups, normoxic control(CON)group and CIH model(CIH). After 9 weeks of normal feeding, the rats were sacrificed, and liver samples were collected for hematoxylin and eosin(HE)staining, transmission electron microscopy, and Oil Red “O” staining. Results Morphological changes: HE staining of the CIH group showed lipid accumulation and lipid vacuole formation leading to hepatocyte steatosis. Microscopy of the ultrastructure showed large clusters of fat droplets and appearance of large numbers of autophagosomes and lysosomes, focal accumulation of glycogen in the rough endoplasmic reticulum, and sparse microvilli in the bile canaliculi. these were rarely seen in the CON group. The CIH group showed obvious morphological changes. Oil Red O staining results: the difference in IOD/Area was statistically significant between the CIH group and CON group(The test statistic=-56.308, P=0.001). Hepatocytes in the CIH group were obviously stained red. Conclusion The rat model of OSAHS with chronic intermittent hypoxia is successful, reliable and effective, which is consistent with the pathophysiological characteristics of OSAHS, and lays a solid foundation for further research on the pathogenesis of abnormal function of various tissues and organs in rats and the possible therapeutic effects of related drugs.

Key words: Sleep apnea syndrome, Hypoxia, Animal, Model, Rats

中图分类号: 

  • R766.3
[1] 徐劲松, 袁春华, 宋宁燕, 等. 间歇性缺氧及睡眠剥夺建立大鼠睡眠呼吸暂停模型[J]. 实验动物与比较医学, 2010, 30(2): 95-99. XU Jinsong, YUAN Chunhua, SONG Ningyan, et al. Establishment of sleep apnea syndrome model in rats with intermittent hypoxia and sleep deprivation [J]. Lab Animal Comp Med, 2010, 30(2): 95-99.
[2] 王璋, 司良毅, 廖友斌. 大鼠睡眠呼吸暂停综合征动物模型的建立[J]. 中国实验动物学报, 2006, 14(1): 40-43. WANG Zhang, SI Liangyi, LIAO Youbin. Establishment of sleep apnea syndrome model in rats [J]. Acta Lab Animalis Sci Sin, 2006, 14(1): 40-43.
[3] 谭胜玉, 杨宇, 罗荧荃, 等. 慢性间歇性缺氧大鼠模型的初步研究[J]. 中国医学工程, 2006, 14(6): 595-598. TAN Shengyu, YANG Yu, LUO Yingquan, et al. Primary study on an established chronic-intermittent hypoxia model in rat [J]. China Med Eng, 2006, 14(6): 595-598.
[4] Wang Y, Guo SZ, Bonen A, et al. Monocarboxylate transporter 2 and stroke severity in a rodent model of sleep apnea [J]. J Neurosci, 2011, 31(28): 10241-10248.
[5] Iturriaga R, Moya EA, Rio RD. Cardiorespiratory alterations induced by intermittent hypoxia in a rat model of sleep apnea[C] //New Front Respir Control, 2010. doi:10.1007/978-1-4419-5692-7_55.
[6] Li XC, Cai XH, Wen ZW, et al. Development and validation of intermittent hypoxia models [J]. J Med Res, 2012, 41(7): 57-61.
[7] Briançon-Marjollet A, Monneret D, Henri M, et al. Endothelin regulates intermittent hypoxia-induced lipolytic remodelling of adipose tissue and phosphorylation of hormone-sensitive lipase [J]. J Physiol, 2016, 594(6): 1727-1740.
[8] Menal MJ, Jorba I, Torres M, et al. Alzheimers disease mutant mice exhibit reduced brain tissue stiffness compared to wild-type mice in both normoxia and following intermittent hypoxia mimicking sleep apnea [J]. Front Neurol, 2018, 9: 1. doi:10.3389/fneur.
[9] Feng YQ, Ju AC, Liu CH, et al. Protective effect of the extract of Yi-Qi-Fu-Mai preparation on hypoxia-induced heart injury in mice [J]. Chin J Nat Med, 2016, 14(6): 401-406.
[10] Xue J, Zhou D, Poulsen O, et al. Intermittent hypoxia and hypercapnia accelerate atherosclerosis, partially via trimethylamine-oxide [J]. Am J Respir Cell Mol Biol, 2017, 57(5): 581-588.
[11] Shin MK, Han W, Joo H, et al. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test [J]. J Appl Physiol(1985), 2017, 122(4): 767-774.
[12] Mankouski A, Kantores C, Wong MJ, et al. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: a new rat model of BPD [J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(2): 208-216.
[13] Liu KX, Chen GP, Lin PL, et al. Detection and analysis of apoptosis-and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model [J]. Life Sci, 2018, 193: 194-199. doi:10.1016/j.lfs.2017.11.001.
[14] Souza GM, Bonagamba LG, Amorim MR, et al. Inspiratory modulation of sympathetic activity is increased in female rats exposed to chronic intermittent hypoxia [J]. Exp Physiol, 2016, 101(11): 1345-1358.
[15] Moraes DJA, Bonagamba LGH, da Silva MP, et al. Respiratory network enhances the sympathoinhibitory component of baroreflex of rats submitted to chronic intermittent hypoxia [J]. Hypertens Dallas Tex, 2016, 68(4): 1021-1030.
[16] Khalyfa A, Qiao Z, Gileles-Hillel A, et al. Activation of the integrated stress response and metabolic dysfunction in a murine model of sleep apnea [J]. Am J Respir Cell Mol Biol, 2017, 57(4): 477-486.
[17] Chopra S, Polotsky VY, Jun JC. Sleep apnea research in animals. past, present, and future [J]. Am J Respir Cell Mol Biol, 2016, 54(3): 299-305.
[18] Hoyos CM, Drager LF, Patel SR. OSA and cardiometabolic risk: Whats the bottom line? [J]. Respirology, 2017, 22(3): 420-429.
[19] Xu LF, Zhou XF, Hu K, et al. Establishment of a rabbit model of chronic obstructive sleep apnea and application in cardiovascular consequences [J]. Chin Med J(Engl), 2017, 130(4): 452-459.
[20] Jameson H, Bateman R, Byrne P, et al. Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats [J]. Am J Physiol Heart Circ Physiol, 2016, 310(11): 1549-1557.
[21] Pedroso D, Nunes AR, Diogo LN, et al. Hippocampal neurogenesis response: What can we expect from two different models of hypertension? [J]. Brain Res, 2016, 1646: 199-206. doi:10.1016/j.brainres.
[22] Weiszenstein M, Shimoda LA, Koc M, et al. Inhibition of lipolysis ameliorates diabetic phenotype in a mouse model of obstructive sleep apnea [J]. Am J Respir Cell Mol Biol, 2016, 55(2): 299-307.
[23] Jorba I, Menal MJ, Torres M, et al. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice [J]. J Mech Behav Biomed Mater, 2017, 71: 106-113. doi: 10.1016/j.jmbbm.
[24] Perini S, Martinez D, Montanari CC, et al. Enhanced expression of melanoma progression markers in mouse model of sleep apnea[J]. Rev Port Pneumol(2006), 2016, 22(4): 209-213.
[25] Chen TI, Tu WC. Exercise attenuates intermittent hypoxia-induced cardiac fibrosis associated with sodium-hydrogen exchanger-1 in rats [J]. Front Physiol, 2016, 7: 462. doi:10.3389/fphys.
[26] Wu J, Sun X, Wu Q, et al. Disrupted intestinal structure in a rat model of intermittent hypoxia[J]. Mol Med Rep, 2016, 13(5): 4407-4413.
[27] Moreno-Indias I, Torres M, Sanchez-Alcoholado L, et al. Normoxic recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxia-induced bacterial dysbiosis and low-grade endotoxemia in mice [J]. Sleep, 2016, 39(10): 1891-1897.
[28] Chen L, Zadi ZH, Zhang J, et al. Intermittent hypoxia in utero damages postnatal growth and cardiovascular function in rats [J]. J Appl Physiol Bethesda Md, 2018, 124(4): 821-830.
[29] Castro-Grattoni AL, Alvarez-Buvé R, Torres M, et al. Intermittent hypoxia-induced cardiovascular remodeling is reversed by normoxia in a mouse model of sleep apnea [J]. Chest, 2016, 149(6): 1400-1408.
[30] Yu HZ, Shao HX, Wu Q, et al. Altered gene expression of hepatic cytochrome P450 in a rat model of intermittent hypoxia with emphysema [J]. Mol Med Rep, 2017, 16(1): 881-886.
[31] Kukwa W, Migacz E, Druc K, et al. Obstructive sleep apnea and cancer: effects of intermittent hypoxia? [J]. Future Oncol, 2015, 11(24): 3285-3298.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 赵立星 宋代辉 魏魁杰 殷恺. 颞下颌关节骨关节病动物模型的建立[J]. 山东大学学报(医学版), 2209, 47(6): 25-27.
[3] 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-.
[4] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[5] 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-.
[6] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[7] 王国云,潘臧钰. 子宫腺肌病动物模型研究进展[J]. 山东大学学报 (医学版), 2022, 60(7): 48-55.
[8] 姚雪,卢冉冉,孙淑玲,高翠平,肖茹,王书会. 风湿性心脏病患者瓣膜置换术后医院感染风险预测评分模型的构建[J]. 山东大学学报 (医学版), 2022, 60(6): 90-96.
[9] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[10] 董雪,赵霞,程子捷,韩毅. 左西孟旦和米力农治疗重症心力衰竭合并肾损伤患者711例的药物经济学评价[J]. 山东大学学报 (医学版), 2022, 60(4): 91-98.
[11] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[12] 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23.
[13] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[14] 冯一平,孙大鹏,王显军,纪伊曼,刘云霞. DLNM和LSTM神经网络对临沂市手足口病发病的预测效果比较[J]. 山东大学学报 (医学版), 2022, 60(2): 96-101.
[15] 郝强,高琦,赵然,王海涛,刘志东,姜宝法. 2014~2016年气温和相对湿度对深圳市5岁以下儿童轮状病毒腹泻的影响[J]. 山东大学学报 (医学版), 2022, 60(2): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄庆,田辉,李林,梁飞,刘贤锡 . 老年人肺癌组织中鸟氨酸脱羧酶基因表达及其临床意义[J]. 山东大学学报(医学版), 2006, 44(6): 556 -559 .
[2] 朱梅佳,韩巨,王新怡,鹿伟,王爱华,关心华,曹霞,曹秉振. 伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病临床病理研究[J]. 山东大学学报(医学版), 2006, 44(8): 834 -839 .
[3] 于慧1,2 ,陈少华1 ,赵家军2 ,高聆3
. 乙醇对人肝L02细胞糖原和GSK3β、PAMPK的影响[J]. 山东大学学报(医学版), 2009, 47(04): 75 -78 .
[4] 宋海岩,武玉玲,张艳萍. 牡蛎提取物对高温致神经管畸形中凋亡细胞的保护作用[J]. 山东大学学报(医学版), 2007, 45(2): 113 -116 .
[5] 王焕亮,孙宝柱,杜洪玫,周长青,张丽. 不同麻醉监测指标调控异丙酚麻醉的比较[J]. 山东大学学报(医学版), 2006, 44(5): 471 -474 .
[6] 王志刚,丁 璇,孙 鹏/sup>,王成伟,郝晓光,潘 顺 . 术前脑血管造影在血管内支架成形术治疗缺血性脑血管病中的应用[J]. 山东大学学报(医学版), 2007, 45(2): 146 -148 .
[7] 曾季平,王丽娜,王立祥,任晓辉,张孟业,夏文,崔行. 氯化锰致PC12细胞损伤的研究[J]. 山东大学学报(医学版), 2006, 44(5): 467 -470 .
[8] 舒雅,齐峰. 下颌角托在肥胖患者全麻诱导中的应用[J]. 山东大学学报(医学版), 2007, 45(10): 1072 -1074 .
[9] 张向丽,刘凤英 . 血清TPA、 sVCAM-1与子痫前期发病关系的初步探讨[J]. 山东大学学报(医学版), 2007, 45(7): 705 -707 .
[10] 赵正斌1,薛双林2,张立婷1,李俊峰1,赵荣荣1,周海莲3,陈红1. 原花青素对瘦素诱导肝星状细胞增殖和TIMP-1产生的影响[J]. 山东大学学报(医学版), 2012, 50(7): 46 .