Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (12): 74-78.doi: 10.6040/j.issn.1671-7554.0.2025.0692

• Clinical Medicine • Previous Articles    

Effet of miR-125a-3p on the proliferation of rheumatoid arthritis synovial fibroblasts

SONG Huishu1, SUN Zhijian2, ZHANG Qiuting1, MI Xue1, ZHANG Ni1, WANG Zhilun1, YIN Zhe1, HAO Xuexi1, WANG Yingxue1   

  1. 1. Department of Rheumatology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    2. Nanjing University, Nanjing 210008, Jiangsu, China
  • Published:2025-12-19

Abstract: Objective To investigate the effects of miR-125a-3p on the proliferation capacity and inflammatory factor secretion levels in rheumatoid arthritis synovial fibroblasts(RA-FLS). Methods Synovial tissues were aseptically obtained from 25 patients with rheumatoid arthritis(RA)after joint replacement surgery, and RA-FLS were isolated for experimental study. MiR-125a-3p mimics and miR-NC were transfected into RA-FLS via cell transfection, and the cultured cells were divided into Control, miR-NC, and miR-125a-3p mimics groups. The expression of miR-125a-3p in each group was detected by real-time quantitative PCR(RT-qPCR). Cell counting kit-8(CCK-8)was used to determine the cell proliferation capacity, and enzyme-linked immunosorbent assay(ELISA)was employed to detect the levels of tumor necrosis factor α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β)in the cell culture supernatant. Results The cell viability of RA-FLS and the levels of TNF-α, IL-1β, and IL-6 in the cell culture supernatant in the miR-125a-3p mimics group were significantly lower than those in the miR-NC group(P<0.001). Conclusion MiR-125a-3p inhibits the proliferation of RA-FLS and the secretion of inflammatory factors, potentially serving as a new target for studying the pathogenesis of RA.

Key words: Rheumatoid arthritis, Synovial fibroblasts, MicroRNA, MiR-125a-3p

CLC Number: 

  • R684.3
[1] Shaker OG, Abdelaleem OO, Fouad NA, et al. Association between miR-155, its polymorphism and ischemia-modified albumin in patients with rheumatoid arthritis[J]. J Interferon Cytokine Res, 2019, 39(7): 428-437.
[2] 国家皮肤与免疫疾病临床医学研究中心(北京协和医院), 中国医师协会风湿免疫专科医师分会, 中国康复医学会风湿免疫病康复专业委员会, 等. 2024中国类风湿关节炎诊疗指南[J]. 中华内科杂志, 2024, 63(11): 1059-1077.
[3] Lefevre S, Meier FMP, Neumann E, et al. Role of synovial fibroblasts in rheumatoid arthritis[J]. Curr Pharm Des, 2015, 21(2): 130-141.
[4] Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis: immune cell-fibroblast-bone interactions[J]. Nat Rev Rheumatol, 2022, 18(7): 415-429.
[5] Zhao JY, Chen B, Peng XD, et al. Quercetin suppresses migration and invasion by targeting miR-146a/GATA6 axis in fibroblast-like synoviocytes of rheumatoid arthritis[J]. Immunopharmacol Immunotoxicol, 2020, 42(3): 221-227.
[6] Armaka M, Konstantopoulos D, Tzaferis C, et al. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis[J]. Genome Med, 2022, 14(1): 78. doi:10.1186/s13073-022-01081-3
[7] Raj Christian SD, Thirugnanasambantham K, Islam MIH, et al. Identification of expressed miRNAs in human rheumatoid arthritis using computational approach-discovery of a new miR-7167 from human[J]. Microrna, 2019, 8(2): 147-154.
[8] Kong RN, Gao J, Ji LM, et al. Iguratimod ameliorates rheumatoid arthritis progression through regulating miR-146a mediated IRAK1 expression and TRAF6/JNK1 pathway: an in vivo and in vitro study[J]. Clin Exp Rheumatol, 2021, 39(2): 289-303.
[9] Jiang Y, Zhong SX, He SH, et al. Biomarkers(mRNAs and non-coding RNAs)for the diagnosis and prognosis of rheumatoid arthritis[J]. Front Immunol, 2023, 14: 1087925. doi:10.3389/fimmu.2023.1087925
[10] Lin K, Su HY, Jiang LF, et al. Influences of miR-320a on proliferation and apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis through targeting MAPK-ERK1/2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(5): 1907-1914.
[11] Liu H, Chen YH, Huang YP, et al. Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling[J]. J Nanobiotechnology, 2024, 22(1): 197. doi:10.1186/s12951-024-02444-1
[12] Wang J, Yan FH, Zhao Q, et al. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer[J]. Sci Rep, 2017, 7(1): 4150.
[13] Zheng LF, Meng X, Li XM, et al. miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor-positive breast cancer[J]. FASEB J, 2018, 32(2): 588-600.
[14] Zhang Y, Chen X, Deng Y. miR-125a-3p decreases levels of interlukin-17 and suppresses renal fibrosis via down-regulating TGF-β1 in systemic lupus erythematosus mediated Lupus nephritic mice[J]. Am J Transl Res, 2019, 11(3): 1843-1853.
[15] Jin Z, Huang QS, Peng J, et al. miR-125a-3p alleviates hyperproliferation of keratinocytes and psoriasis-like inflammation by targeting TLR4/NF-κB pathway[J]. Postepy Dermatol Alergol, 2023, 40(3): 447-461.
[16] Peng HY, Xing J, Wang XH, et al. Circular RNA circNUP214 modulates the T helper 17 cell response in patients with rheumatoid arthritis[J]. Front Immunol, 2022, 13: 885896. doi:10.3389/fimmu.2022.885896
[17] Wang YX, Yin Z, Zhang N, et al. miR-125a-3p inhibits cell proliferation and inflammation responses in fibroblast-like synovial cells in rheumatoid arthritis by mediating the Wnt/β-catenin and NF-κB pathways via targeting MAST3[J]. J Musculoskelet Neuronal Interact, 2021, 21(4): 560-567.
[18] Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative[J]. Ann Rheum Dis, 2010, 69(9): 1580-1588.
[19] Gravallese EM, Firestein GS. Rheumatoid arthritis-common origins, divergent mechanisms[J]. N Engl J Med, 2023, 388(6): 529-542.
[20] 蒋经, 邓慧, 孙文魁, 等. 类风湿关节炎相关microRNA的研究进展[J]. 现代医学, 2023, 51(3): 396-400. JIANG Jing, DENG Hui, SUN Wenkui, et al. Research progress of microRNA related to rheumatoid arthritis[J]. Modern Medical Journal, 2023, 51(3): 396-400.
[21] Gao B, Sun GM, Wang Y, et al. microRNA-23 inhibits inflammation to alleviate rheumatoid arthritis via regulating CXCL12[J]. Exp Ther Med, 2021, 21(5): 459. doi:10.3892/etm.2021.9890
[22] Gao J, Kong RN, Zhou XL, et al. MiRNA-126 expression inhibits IL-23R mediated TNF-α or IFN-γ production in fibroblast-like synoviocytes in a mice model of collagen-induced rheumatoid arthritis[J]. Apoptosis, 2018, 23(11/12): 607-615.
[23] 陈沐, 周圆明, 韩俊彦, 等. 新型冠状病毒感染患者鼻黏膜上皮脱落细胞中miR-125a-3p、miR-144a-3p表达变化及其意义[J]. 山东医药, 2024, 64(27): 49-52. CHEN Mu, ZHOU Yuanming, HAN Junyan, et al. Changes and significance of miR-125a-3p and miR-144a-3p expression in exfoliated cells of nasal mucosa of patients with novel coronavirus infection[J]. Shandong Medical Journal, 2024, 64(27): 49-52.
[24] Kim SW, Ramasamy K, Bouamar H, et al. microRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3(TNFAIP3, A20)[J]. Proc Natl Acad Sci USA, 2012, 109(20): 7865-7870.
[25] Zhao X, Tang YJ, Qu B, et al. microRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus[J]. Arthritis Rheum, 2010, 62(11): 3425-3435.
[26] Banerjee S, Cui HC, Xie N, et al. miR-125a-5p regulates differential activation of macrophages and inflammation[J]. J Biol Chem, 2013, 288(49): 35428-35436.
[27] 王乐. miR-125a-3p对骨关节炎大鼠软骨细胞活性、氧化应激反应及SIRT1/Foxo1蛋白表达的影响[J]. 临床骨科杂志, 2023, 26(2): 293-298. WANG Le Infulence of miR-125a-3p on activity, oxidative stress reaction and SIRT1/Foxo1 protein expression of chondrocytes in osteoarthritic rats[J]. Journal of Clinical Orthopaedics, 2023, 26(2): 293-298.
[28] Wang JH, Zheng Y, Bai BB, et al. microRNA-125a-3p participates in odontoblastic differentiation of dental pulp stem cells by targeting Fyn[J]. Cytotechnology, 2020, 72(1): 69-79.
[1] CUI Qianqian, LI Jinpeng, WU Yudan, HOU Zhiping, SUN Weiluo, CUI Panpan, HE Peiyuan. Clinical value of fecal miRNA for non-invasive screening of advanced colorectal adenomas [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 43-50.
[2] DU Aijia, ZHANG Man, CHEN He, WANG Lixin, SHANG Yingshu. miR-1270-targeted regulation of angiopoietin-like protein 7 inhibits macrophage inflammation and lipid accumulation [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 1-9.
[3] WEI Jiacheng, YANG Baozhong, WEI Wei, XUE Yating, CUI Chenlong, FANG Jun. MicroRNA-210-3p inhibits inflammatory pain in rats by regulation ten-eleven translocation 2 expression [J]. Journal of Shandong University (Health Sciences), 2024, 62(6): 17-29.
[4] ZHAO Yuanyuan, LU Juntao, WU Xiaohua. Effects of human umbilical cord mesenchymal stem cell-derived exosomal miR-100 on inflammation of ovarian granulosa cells in polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 51-58.
[5] GUO Yunfei, SHU Qiang. Role of immunosuppressants in rheumatic disease-associated recurrent spontaneous abortion [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 38-43.
[6] Bing LUO. Impact of EBV on the epigenetics of gastric carcinoma [J]. Journal of Shandong University (Health Sciences), 2021, 59(5): 30-39.
[7] YANG Zhen, ZHANG Yanmin, WANG Qianqian, CHEN Huimin, FENG Qiang, ZHOU Shaoying. Correlations of microRNA-103 and microRNA-107 expressions with the clinical characteristics and prognosis of 120 cases of sepsis [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 77-85.
[8] ZHANG Weiyue, LI Yaguang, LIU Enling, WANG Weijie, WEI Jingwen, JING Nan. Expression of microRNA519D and matrix metalloproteinase2 in placenta tissues of pre-eclampsia and its significance [J]. Journal of Shandong University (Health Sciences), 2020, 58(1): 54-59.
[9] HE Tingting, LIU Hong, SHU Kaiyun, SONG Xiaocui, SHI Yuhua. Expression and significance of microRNA-141 in granulosa cells of patients with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2019, 57(5): 116-120.
[10] LI Jian, XU Bing, YAN Xinfeng, XU Wanju, CHANG Xiaotian. Screening key genes for TXNDC5 and insulin signaling pathway [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 88-93.
[11] JIA Yueyue, LIU Hongbin, LI Jingbo, LI Jing, ZHANG Jiangtao, SUN Mei, SHI Yuhua. Expression of microRNA-200b in granulosa cells of PCOS patients and its significance [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(1): 63-68.
[12] LI Jingbo, LIU Hongbin, JIA Yueyue, WANG Ze, SUN Mei, SHI Yuhua. Expression and clinical significance of microRNA-183 in polycystic ovary syndrome with insulin resistance [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(1): 69-74.
[13] JIANG Yunshan, TAN Hong, LI Xiaoyan, SU Li, ZHANG Guoming, ZHANG Hongming, MENG Nan. Effects of perindopril on the expression of plasma miR-423-5p and cardiac function in patients with heart failure [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(8): 55-59.
[14] ZHAO Yan, ZHENG Yabing, YAN Xinfeng, ZHANG Hu, CHANG Xiaotian. Screening crucial genes for glucose metabolism in rheumatoid arthritis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(3): 30-35.
[15] XI Fuli, ZHANG Mei. Regulation of microRNA-34a on SH2B3 expression during cardiac fibrosis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(2): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!