[1] |
Milutinovi c A, Šuput D, Zorc-Pleskovi c R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review[J]. Bosn J Basic Med Sci, 2020, 20(1): 21-30.
|
[2] |
秦超师, 牛晓琳. PCSK9促进动脉粥样硬化的机制进展[J]. 心脏杂志, 2021, 33(4): 447-451. QIN Chaoshi, NIU Xiaolin. Mechanisms of PCSK9 on development of atherosclerosis[J]. China Industrial Economics, 2021, 33(4): 447-451.
|
[3] |
胡斌, 牛志伟, 李琳. 人ANGPTL7蛋白生物信息学分析[J]. 山西医科大学学报, 2018, 49(6): 636-643. HU Bin, NIU Zhiwei, LI Lin. Bioinformatics analysis of human ANGPTL7 protein[J]. Journal of Shanxi Medical University, 2018, 49(6): 636-643.
|
[4] |
Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci[J]. Nat Genet, 2012, 44(5): 526-531.
|
[5] |
Abu-Farha M, Cherian P, Al-Khairi I, et al. Plasma and adipose tissue level of angiopoietin-like 7(ANGPTL7)are increased in obesity and reduced after physical exercise[J]. PLoS One, 2017, 12(3): e0173024.
|
[6] |
Li J, Liang T, Wang Y, et al. Angiopoietin-like protein 7 mediates TNF-α-induced adhesion and oxidative stress in human umbilical vein epithelial cell[J]. Gen Physiol Biophys, 2020, 39(3): 285-292.
|
[7] |
Zhao Y, Liu K, Yin D, et al. Angiopoietin-like 7 contributes to angiotensin II-induced proliferation, inflammation and apoptosis in vascular smooth muscle cells[J]. Pharmacology, 2019,104(5-6): 226-234.
|
[8] |
Allayee H, Farber CR, Seldin MM, et al. Systems genetics approaches for understanding complex traits with relevance for human disease[J]. Elife, 2023, 12: e91004. doi:10.7554/elife.91004.
|
[9] |
余琴, 梁丽艳, 刘超群, 等. 急性心肌梗死患者血清miR-133a、miR-499-5p表达与PCI术后冠状动脉无复流的关系[J]. 国际检验医学杂志, 2023, 44(9): 1059-1063. YU Qin, LIANG Liyan, LIU Chaoqun, et al. Relationship between serum miR-133 a, miR-499-5 p expression in patients with acute myocardial infarction and no coronary reflow after PCI[J]. International Journal of Laboratory Medicine, 2023, 44(9): 1059-1063.
|
[10] |
郭丽婷, 郑辉. MicroRNAs在动脉粥样硬化发病机制中的调控作用[J]. 医学理论与实践, 2022, 35(13): 2188-2189. GUO Liting, ZHENG Hui. Regulatory role of microRNAs in the pathogenesis of atherosclerosis[J]. The Journal of Medical Theory and Practice, 2022, 35(13): 2188-2189.
|
[11] |
Chen L, Hu L, Zhu X, et al. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis[J]. Cell Cycle, 2020, 19(19): 2472-2485.
|
[12] |
Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics[J]. Signal Transduct Target Ther, 2023, 22, 8(1): 207.
|
[13] |
Wang K, Bai X, Mei L, et al. CircRNA_0050486 promotes cell apoptosis and inflammation by targeting miR-1270 in atherosclerosis[J]. Ann Transl Med, 2022, 10(16): 905.
|
[14] |
Liu YZ, Zhang C, Jiang JF, et al. Angiopoietin-like proteins in atherosclerosis[J]. Clin Chim Acta, 2021, 521: 19-24. doi: 10.1016/j.cca.2021.06.024.
|
[15] |
Mazidi M, Wright N, Yao P, et al. Plasma proteomics to identify drug targets for ischemic heart disease[J]. J Am Coll Cardiol, 2023, 82(20): 1906-1920.
|
[16] |
Ehrlich KC, Lacey M, Ehrlich M. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes[J]. Epigenomics, 2019, 11(2): 169-186.
|
[17] |
Luo M, Peng D. ANGPTL8: an important regulator in metabolic disorders[J]. Front Endocrinol(Lausanne), 2018, 9: 169. doi: 10.3389/fendo.2018.00169. eCollection 2018.
|
[18] |
Xu F, Shen L, Yang Y, et al. Association between plasma levels of ANGPTL3, 4, 8 and the most common additional cardiovascular risk factors in patients with hypertension[J]. Diabetes Metab Syndr Obes, 2023, 16: 1647-1655. doi: 10.2147/DMSO.S411483. eCollection 2023.
|
[19] |
Thorin E, Labbé P, Lambert M, et al. Angiopoietin-like proteins: cardiovascular biology and therapeutic targeting for the prevention of cardiovascular diseases[J]. Can J Cardiol, 2023, 39(12): 1736-1756.
|
[20] |
中国血脂管理指南修订联合专家委员会. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271.
|
[21] |
罗庭, 周小雁, 罗平, 等. 急性冠脉综合征患者血清ANGPTL3与炎症激活、糖脂代谢紊乱的相关性研究[J]. 中国循证心血管医学杂志, 2020, 12(10): 1251-1254. LUO Ting, ZHOU Xiaoyan, LUO Ping, et al. Correlation between serum ANGPTL3 and inflammatory activation and glucose and lipid metabolism disorders in patients with acute coronary syndrome[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2020, 12(10): 1251-1254.
|
[22] |
蓝依婷, 陆兆华. 血管生成素样因子-7在心血管疾病中的研究进展[J]. 心血管病防治知识, 2022, 12(14): 91-94. LAN Yiting, LU Zhaohua. Research progress of angiopoietin-like factor-7 in cardiovascular diseases[J]. Prevention and Treatment of Cardiovascular Disease, 2022, 12(14): 91-94.
|
[23] |
Leentjens M, Alterki A, Abu-Farha M, et al. Increased plasma ANGPTL7 levels with increased obstructive sleep apnea severity[J]. Front Endocrinol(Lausanne), 2022, 13: 922425. doi: 10.3389/fendo.2022.922425. eCollection 2022.
|
[24] |
Qian T, Wang K, Cui J, et al. Angiopoietin-like protein 7 promotes an inflammatory phenotype in RAW264.7 macrophages through the P38 MAPK signaling pathway[J]. Inflammation, 2016, 39(3): 974-985.
|
[25] |
刘岩, 张曼, 姜朝阳, 等. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J].山东大学学报(医学版), 2022, 60(6): 1-9.
|
[26] |
Procyk G, Grodzka O, Procyk M, et al. MicroRNAs in myocarditis-review of the preclinical in vivo trials[J]. Biomedicines, 2023, 11(10): 2723.
|
[27] |
Beňa cka R, Szabóová D, Gulašová Z, et al. Non-coding RNAs in human cancer and other diseases: overview of the diagnostic potential[J]. Int J Mol Sci, 2023, 24(22): 16213.
|
[28] |
Chen X, Yang Y, Sun J, et al. LncRNA HCG11 represses ovarian cancer cell growth via AKT signaling pathway[J]. J Obstet Gynaecol Res, 2022, 48(3): 796-805.
|
[29] |
陈煜. PTEN与动脉粥样硬化[J]. 临床与病理杂志, 2023, 43(4): 836-841. CHEN YU. PTEN and atherosclerosis[J]. Journal of Clinical and Pathological Research, 2023, 43(4): 836-841.
|