Journal of Shandong University (Health Sciences) ›› 2018, Vol. 56 ›› Issue (11): 18-26.doi: 10.6040/j.issn.1671-7554.0.2018.692

Previous Articles    

PM2.5 exposure promotes the genesis and development of atherosclerosis

WU Weidong1, AN Zhen1,2, GUI Shuangjun3, XU Jie1, FAN Wei1, SONG Jie1   

  1. 1. School of Public Health, Xinxiang Medical University, Xinxiang 453000, Henan, China;
    2. College of Life Sciences, Henan Normal University, Xinxiang 453000, Henan, China;
    3. The Third Clinical Medical College, Xinxiang Medical University, Xinxiang 453000, Henan, China
  • Published:2022-09-27

Abstract: Fine particulate matter with aerodynamic diameter ≤ 2.5 μm(PM2.5)is a main contributor to haze, and constitutes a major risk to human health. Numerous epidemiological, clinical and toxicological studies have demonstrated that exposure to PM2.5 has been strongly associated with the development of cardiovascular disease(CVD). Short-term 山 东 大 学 学 报 (医 学 版)56卷11期 -吴卫东,等.PM2.5暴露促进动脉粥样硬化发生发展的研究进展 \=-exposure to PM2.5 triggers acute cardiovascular events, while long-term exposure significantly augments the risk of morbidity and mortality. CVDs have been attributed as the leading cause of death globally in the last decades, in which atherosclerosis(AS)is an essential event in the pathogenesis. Increasing evidence has revealed that both acute exposure to high concentrations or long-term exposure to low concentrations of PM2.5 can promote the progression and vulnerability of atherosclerotic plaques; however, the underlying mechanisms have not been elucidated yet. This review mainly summarizes the association between AS and PM2.5 exposures, and the underlying mechanisms of AS progression following PM2.5 exposures.

Key words: Fine particulate matter, Atherosclerosis, Cardiovascular disease

CLC Number: 

  • R574
[1] Brauer M, Boys BL, Martin RV, et al. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter[J]. Environ Health Perspect, 2015, 123(2): 135-143.
[2] Lelieveld J, Evans JS, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569): 367-371.
[3] An Z, Jin YF, Li Juan, et al. Impact of particulate air pollution on cardiovascular health[J]. Curr Allergy Asthma Rep, 2018, 18(3): 15.
[4] Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015[J]. Lancet, 2017, 389(10082): 1907-1918.
[5] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s[J]. Nature, 1993, 362(6423): 801-809.
[6] Huang J, Pan XC, Guo XB, et al. Health impact of China's Air Pollution Prevention and Control Action Plan: an analysis of national air quality monitoring and mortality data[J]. Lancet Planet Health, 2018, 2(7): 313-323.
[7] Gan WQ, Allen RW, Brauer M, et al. Long-term exposure to traffic-related air pollution and progression of carotid artery atherosclerosis: a prospective cohort study[J]. BMJ Open, 2014, 4(4): e004743.
[8] 郑霞霞, 丁家望, 童晓红. 动脉粥样硬化易损斑块形成和破裂的研究进展[J]. 生命的化学, 2015, 35(1): 51-56. ZHENG Xiaxia, DING Jiawang, TONG Xiaohong. Mechanism of vulnerable plaque formation and rupture[J]. Chemistry of Life, 2015, 35(1): 51-56.
[9] McEwen JE, Zimniak P, Mehta JL, et al. Molecular pathology of aging and its implications for senescent coronary atherosclerosis[J]. Curr Opin Cardiol, 2005, 20(5): 399-406.
[10] Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American Heart Association[J]. Circulation, 2010, 121: 2331-2378. doi: 10.1161/CIR.0b013e3181dbece1.
[11] Du YX, Xu XH, Chu M, et al. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence[J]. J Thorac Dis, 2016, 8(1): 8-19.
[12] Pitha J, Kralova Lesna I, Hubacek JA, et al. Smoking impairs and circulating stem cells favour the protective effect of the T allele of the connexin37 gene in ischemic heart disease-A multinational study[J]. Atherosclerosis, 2015, 244: 73-78. doi: 10.1016/j.atherosclerosis.2015.11.007.
[13] Sarzynski MA, Burton J, Rankinen T, et al. The effects of exercise on the lipoprotein subclass profile: A meta-analysis of 10 interventions[J]. Atherosclerosis, 2015, 243: 364-372. doi: 10.1016/j.atherosclerosis.2015.10.018.
[14] Nahrendorf M, Swirski FK. Lifestyle effects on hematopoiesis and atherosclerosis[J]. Circ Res, 2015, 116: 884-894. doi: 10.1161/CIRCRESAHA.116.303550.
[15] Stary HC. Natural history and histological classification of atherosclerotic lesions: an update[J]. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1177-1178.
[16] Lusis JA. Atherosclerosis[J]. Nature, 2000, 407: 233-241. doi: 10.1038/35025203.
[17] Bai Y, Sun Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights[J]. Biochim Biophys Acta, 2016, 1860(12): 2863-2838.
[18] 吴歆华, 张华, 吴宗贵. 巨噬细胞与动脉粥样硬化[J]. 心血管病学进展, 2005, 26(3): 302-306. WU Xinhua, ZHANG Hua, WU Zonggui. Macrophage and atherosclerosis[J]. Advances in Cardiovascular Diseases, 2005, 26(3): 302-306.
[19] Fang P, Zhang DQ, Cheng ZJ, et al. Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis[J]. Diabetes, 2014, 63(12): 4275-4290.
[20] Stachyra K, Kiepura A, Olszanecki R. Air pollution and atherosclerosis-a brief review of mechanistic links between atherogenesis and biological actions of inorganic part of particulate matter[J]. Folia Med Cracov, 2017, 57(3): 37-46.
[21] Nègre-Salvayre A, Augé N, Camaré C, et al. Dual signaling evoked by oxidized LDLs in vascular cells[J]. Free Radic Biol Med, 2017, 106: 118-133. doi: 10.1016/j.freeradbiomed.2017.02.006.
[22] Ferrari E, Lutgens E, Weber C, et al. Atherosclerosis: cell biology and lipoproteins focus on epigenetic modification and macrophage biology[J]. Curr Opin Lipidol, 2017, 28(2): 220-221.
[23] Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis[J]. Acta Med Indones, 2007, 39(2): 86-93.
[24] Karmann K, Hughes CC, Schechner J, et al. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression[J]. Proc Natl Acad Sci, 1995, 92(10): 4342-4346.
[25] Mach F, Schonbeck U, Sukhova GK, et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis[J]. Proc Natl Acad Sci, 1997, 94(5): 1931-1936.
[26] Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2008, 28(5): 812-819.
[27] Weichenthal S, Villeneuve PJ, Burnett RT, et al. Longterm exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort[J]. Environ Health Perspect, 2014, 122: 609-615. doi: 10.1289/ehp.1307277.
[28] Qin XD, Qian Z, Vaughn MG, et al. Gender-specific differences of interaction between obesity and air pollution on stroke and cardiovascular diseases in Chinese adults from a high pollution range area: A large population based cross sectional study[J]. Sci Total Environ, 2015, 529: 243-248.doi: 10.1016/j.scitotenv.2015.05.041.
[29] Bell ML, Ebisu K, Leaderer BP, et al. Associations of PM2.5 constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts(USA)for persons ≥ 65 years of age[J]. Environ Health Perspect, 2014, 122(2): 138-144.
[30] Allen RW, Adar SD, Avol E, et al. Modeling the residential infiltration of outdoor PM(2.5)in the Multi-Ethnic Study of Atherosclerosis and Air Pollution(MESA Air)[J]. Environ Health Perspect, 2012, 120(6): 824-830.
[31] Künzli N, Jerrett M, Garcia-Esteban R, et al. Ambient air pollution and the progression of atherosclerosis in adults[J]. PLoS one, 2010, 5(2): e9096.doi: 10.1371/journal.pone.
[32] Künzli N, Jerrett M, Mack WJ, et al. Ambient air pollution and atherosclerosis in Los Angeles[J]. Environ Health Perspect, 2005, 113(2): 201-206.
[33] Diez Roux AV, Auchincloss AH, Franklin TG, et al. Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis[J]. Am J Epidemoil, 2008, 167(6): 667-675.
[34] Hoffmann B, Moebus S, Möhlenkamp S, et al. Residential exposure to traffic is associated with coronary atherosclerosis[J]. Circulation, 2007, 116(5): 489-496.
[35] Hoffmann B, Moebus S, Kröger K, et a1. Residential exposure to urban air pollution, ankle-braehial index, and peripheral arterial disease[J]. Epidemiology, 2009, 20(2): 280-288.
[36] Kaälsch H, Hennig F, Moebus S, et al. Are air pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf Recall Study[J]. Eur Heart J, 2014, 35(13): 853-860.
[37] Sun Q, Wang A, Jin X, et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model[J]. JAMA, 2005, 294(23):3003-3010.
[38] Chen T, Jia G, Wei Y. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice[J]. Toxicol Lett, 2013, 223(2): 146-153.
[39] Araujo JA, Barajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress[J]. Circ Res, 2008, 102(5): 589-596.
[40] Crobeddu B, Aragao-Santiago L, Bui LC, et al. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress[J]. Environ Pollut, 2017, 230: 125-133. doi: 10.1016/j.envpol.2017.06.051.
[41] Visentin M, Pagnoni A, Sarti E, et al. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays[J]. Environ Pollut, 2016, 219: 72-79. doi: 10.1016/j.envpol.2016.09.047.
[42] Squadrito GL, Cueto R, Dellinger Β, et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter[J]. Free Rad Biol Med, 2001, 31(9): 1132-1138.
[43] Pardo M, Xu F, Qiu X, et al. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver[J]. Sci Total Environ, 2018, 626: 147-155. doi: 10.1016/j.scitotenv.2018.01.017.
[44] Lakey PS, Berkemeier T, Tong H, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract[J]. Sci Rep, 2016, 6: 32916. doi: 10.1038/srep32916.
[45] Ke Y, Huang L, Xia J, et al. Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles[J]. Toxicol Lett, 2016, 255: 36-42. doi: 10.1016/j.toxlet.2016.05.017.
[46] Li R, Kou X, Geng H, et al. Mitochondrial damage: an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats[J]. J Hazard Mater, 2015, 287: 392-401. doi: 10.1016/j.jhazmat.2015.02.006.
[47] Tskitishvili E, Sharentuya N, Temma-Asano K, et al. Oxidative stress-induced S100B protein from placenta and amnion affects soluble Endoglin release from endothelial cells[J]. Mol Hum Reprod, 2010, 16(3): 188-199.
[48] Gisterå A, Hansson GK. The immunology of atherosclerosis[J]. Nat Rev Nephrol, 2017, 13(6): 368-380.
[49] Li R, Navab M, Pakbin P, et al. Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice[J]. J Lipid Res, 2013, 54(6): 1608-1615.
[50] Wang G, Zhao J, Jiang R, et al. Rat lung response to ozone and fine particulate matter(PM2.5)exposures[J]. Environ Toxicol, 2015, 30(3): 343-356.
[51] Freitas Lima LC, Braga VA, do Socorro de França Silva M, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association[J]. Front Physiol, 2015, 6(51): 1-15.
[52] de Winther MP, Gijbels MJ, van Dijk KW, et al. Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3Leiden transgenic mice[J]. Atherosclerosis, 1999, 144(2): 315-321.
[53] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest, 2000, 105(8): 1049-1056.
[54] Prueitt RL, Cohen JM, Goodman JE. Evaluation of atherosclerosis as a potential mode of action for cardiovascular effects of particulate matter[J]. Regul Toxicol Pharmacol, 2015, 73: 1-15. doi: 10.1016/j.yrtph.2015.09.034.
[55] van Eeden SF, Tan WC, Suwa T, et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants(PM10)[J]. Am J Respir Crit Care Med, 2001, 164(5): 826-830.
[56] Mo Y, Wan RS, Tollerud D, et al. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase[J]. Toxicol Appl Pharm, 2009, 236(2): 183-193.
[57] Van Eeden SF, Leipsic J, Paul Man SF, et al. The relationship between lung inflammation and cardiovascular disease[J]. Am J Respir Crit Care Med, 2012, 186(1): 11-16.
[58] Brocato J, Sun H, Shamy M, et al. Particulate matter from Saudi Arabia induces genes involved in inflammation, metabolic syndrome and atherosclerosis[J]. J Toxicol Environ Health A, 2014, 77(13): 751-766.
[59] Stachyra K, Kiepura A, Olszanecki R. Air pollution and atherosclerosis-a brief review of mechanistic links between atherogenesis and biological actions of inorganic part of particulate matter[J]. Folia Med Cracov, 2017, 57(3): 37-46.
[60] Steyers RC, Miller JF. Endothelial dysfunction in chronic inflammatory diseases[J]. Int J Mol Sci, 2014, 15(7): 11324.
[61] Pope CA, Bhatnagar A, Mccracken J, et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation[J]. Circ Res, 2016, 119(11): 1204-1214.
[62] Nurkiewicz TR, Porter DW, Barger M, et al. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure[J]. Environ Health Perspect, 2006, 114(3): 412-419.
[63] Nurkiewicz TR, Porter DW, Hubbs AF, et al. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction[J]. Part Fibre Toxicol, 2008, 5: 1. doi: 10.1186/1743-8977-5-1.
[64] Brook RD, Urch B, Dvonch JT, et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans[J]. Hypertension, 2009, 54(3): 659-667.
[65] Cosselman KE, Krishnan RM, Oron AP, et al. Blood pressure response to controlled diesel exhaust exposure in human subjects[J]. Hypertension, 2012, 59(5): 943-948.
[66] Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure[J]. J Am Soc Hypertension, 2009, 3(5): 332-350.
[67] Ying Z, Xu X, Bai Y, et al. Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: a role for hypothalamic inflammation[J]. Environ Health Perspect, 2014, 122(1): 79-86.
[68] Assmann G, Cullen P, Jossa F, et al. Coronary heart disease: reducing the risk: the scientific background to primary and secondary prevention of coronary heart disease. A worldwide view. International Task force for the Prevention of Coronary Heart disease[J]. Arterioscler Thromb Vasc Biol, 1999, 19(8): 1819-1824.
[69] Gerhard GT, Duell PB. Homocysteine and atherosclerosis[J]. Curr Opin Lipidol, 1999, 10: 417-428. doi: 10.1097/00041433-199910000-00006.
[70] Carr S, Farb A, Pearce WH, et al. Atherosclerotic plaque rupture in symptomatic carotid artery stenosis[J]. J Vasc Surg, 1996, 23: 755-765. doi: 10.1016/S0741-5214(96)70237-9.
[71] Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly[J]. N Engl J Med, 1997, 336(18): 1276-1282.
[72] Burke AP, Farb A, Malcom GT, et al. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women[J]. Circulation, 1998, 97(21): 2110- 2116.
[73] Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease[J]. Arterioscler Thromb Vasc Biol, 2008, 28(11): 1920-1927.
[74] Franchini M, Guida A, Tufano A, et al. Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms[J]. J Thromb Haemost, 2012, 10(12): 2438-2451.
[75] Cozzi E, Wingard CJ, Cascio WE, et al. Effect of ambient particulate matter exposure on hemostasis[J]. Transl Res J Lab Clin Med, 2007, 149(6): 324-332.
[76] Tabor CM, Shaw CA, Robertson S, et al. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis[J]. Part Fibre Toxicol, 2016, 13: 6. doi: 10.1186/s12989-016-0116-x.
[77] Pan X, Gong YY, Martinelli I, et al. Fibrin clot structure is affected by levels of particulate air pollution exposure in patients with venous thrombosis[J]. Environ Int, 2016, 92-93: 70-76. doi: 10.1016/j.envint.2016.03.030.
[78] Li R, Navab M, Pakbin P, et al. Ambient ultrafne particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice[J]. J Lipid Res, 2013, 54(6): 1608-1615.
[79] Manzano-León N, Mas-Oliva J, Sevilla-Tapia L, et al. Particulate matter promotes in vitro receptor-recognizable low-density lipoprotein oxidation and dysfunction of lipid receptors[J]. J Biochem Mol Toxicol,2013, 27(1): 69-76.
[80] Freeman SR, Jin X, Anzinger JJ, et al. ABCG1-mediated generation of extracellular cholesterol microdomains[J]. J Lipid Res, 2014, 55(1): 115-127.
[81] Riwanto M, Rohrer L, Roschitzki B, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling[J]. Circulation, 2013, 127(8): 891-904.
[82] Shih DM, Xia YR, Wang XP, et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis[J]. J Biol Chem, 2000, 275(23): 17527-17535.
[83] Bell G, Mora S, Greenland P, et al. Association of air pollution exposures with high-density lipoprotein cholesterol and particle number: the Multi-Ethnic Study of Atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2017, 37(5): 976-982.
[84] Du X, Jiang S, Zeng X, et al. Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE-/- mice[J]. Toxicol Lett, 2018, 290: 123-132. doi: 10.1016/j.toxlet.2018.03.022.
[1] WU Hong, ZHANG Zhengduo, TANG Yanjin, QI Shaojun, GAO Xibao. Potential intervention effects of 5-methyltetrahydrofolate on atherosclerosis in rats [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 6-13.
[2] XIE Jiaying, QI Jia, SONG Ming, LI Yulin, WANG Di, JIA Xu, ZHANG Wei, ZHONG Ming, SHANG Yuanyuan. Association between serum β-sheet level and coronary heart disease [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 21-26.
[3] Yihai CAO. Targeting angiogenesis for disease therapy [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 9-14.
[4] ZHAI Yifan, WANG Zhaojun, BAI Shuoxin, LIN Shaoqian, WANG Fangyi, DU Shuang, WANG Zhiping. Effect of maternal PM10 and PM2.5 exposure during pregnancy on neonatal birth weight [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 99-106.
[5] WANG Liheng, PENG Xiumiao, ZHANG Yingjian, SHAN Bing, CAO Meng, CUI Liangliang. Concentration characteristics and chronic health risk assessment of metal elements in atmospheric PM2.5 in two districts of Jinan from 2016 to 2020 [J]. Journal of Shandong University (Health Sciences), 2021, 59(12): 63-69.
[6] SUN Chengyao, TANG Dajing, CHEN Fengge, ZHAO Chuan, GUAN Mingyang. Trend and health risk assessment of chemical components in atmospheric PM2.5 in Shijiazhuang City from 2016 to 2020 [J]. Journal of Shandong University (Health Sciences), 2021, 59(12): 78-86.
[7] CAO Meng, WANG Liheng, PENG Xiumiao, CUI Liangliang. Concentration characteristics and chronic health risk assessment of polycyclic aromatic hydrocarbons in atmospheric PM2.5 in two districts of Jinan from 2016 to 2020 [J]. Journal of Shandong University (Health Sciences), 2021, 59(12): 87-95.
[8] XIAO Yang, TAO Yu, WANG Fangyi, LIANG Yuxiu, ZHANG Jin, JI Xiaokang, WANG Zhiping. Association between PM2.5 and PM10 exposure with gestational diabetes mellitus in certain areas of Shandong Province [J]. Journal of Shandong University (Health Sciences), 2021, 59(12): 101-109.
[9] DENG Qingwen, LIU Wenbin. Multilevel analysis of health related quality of life of patients with cardiovascular disease and its determinants [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 115-121.
[10] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24-31.
[11] ZHANG Anran, HU Wenqi, LI Jiawei, WEI Ran, MA Wei. Impact of heatwaves on daily death from cardiovascular diseases: a case-crossover study [J]. Journal of Shandong University (Health Sciences), 2018, 56(8): 56-62.
[12] LI Jing, WANG Chuangxin, XU Xin, YANG Jun, WANG Chunping, XUE Fuzhong, LIU Qiyong. Impacts of ambient temperature on chronic non-communicable disease mortality in Jinan City, China during 2007-2013: an attributable risk study [J]. Journal of Shandong University (Health Sciences), 2018, 56(8): 76-87.
[13] SHI Xiaoming. Research advances on the epidemiological study on acute health effects of ambient fine particulate matter and related components [J]. Journal of Shandong University (Health Sciences), 2018, 56(11): 1-11.
[14] KONG Fanling, ZHAO Lin, CUI Liangliang. PM2.5 and cardiovascular disease [J]. Journal of Shandong University (Health Sciences), 2018, 56(11): 12-17.
[15] YIN Ni, YANG Guanlin, JIANG Junwen, WANG Chuntian, WANG Fengyao, JIA Lianqun, GAO Xiaoyu, PAN Jiaxiang, LI Qin, LI Jia, FENG Yuanjie, GAO Yuzhu, ZHOU He, ZHANG Zhe. A reliable system to assess atherosclerosis model of Bama minipigs [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(7): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!