Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (3): 1-9.doi: 10.6040/j.issn.1671-7554.0.2020.1499

   

Effects of A151 on the polarization of BV-2 cells induced by glucose and oxygen deprivation and lipopolysaccharide

MIN Aoxue, ZHU Tianrui, ZHANG Feng, WANG Ranran, LI Xiaohong   

  1. Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong, China
  • Published:2021-04-06

Abstract: Objective To investigate the effects of inhibitory oligodeoxynucleotide A151 on M1/M2 polarization of microglia by glucose and oxygen deprivation(OGD)and lipopolysaccharide(LPS). Methods The morphological changes of BV-2 cells treated with A151 were observed with inverted microscope. The cytokine content in supernatant and cytokine transcription levels were detected with ELISA and RT-PCR, respectively. The expressions of M1 and M2 surface markers in microglia and NLRP3 inflammasome were determined with Western blotting and immunofluorescence. Results A151 inhibited the morphological changes of BV-2 cells induced by LPS and OGD; downregulated the surface markers and highly-expressed cytokines of M1 microglia: inducible nitric oxide synthase(iNOS)、CD16/CD32、tumor necrosis factor-α(TNF-α)、interleukin-1β(IL-1β)(P<0.001); downregulated the transcription levels of TNF-α mRNA and IL-1β mRNA(P<0.001); upregulated the surface markers of M2 microglia and highly-expressed cytokines: arginase-1(Arg-1)、CD206、interleukin-10(IL-10)、 interleukin-4(IL-4)(PArg-1<0.001, PCD206<0.001, PIL-10<0.001, PIL-4=0.046); upregulated IL-10 mRNA and IL-4 mRNA transcription levels(P<0.001); down-regulated NLRP3 inflammasome expression(P<0.001). Conclusion By inhibiting the activation of NLRP3 inflammasome, A151 promotes the polarization of microglia induced by LPS and OGD from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, and plays a role in regulating inflammation.

Key words: Inhibitory oligodeoxynucleotide A151, Microglia, Polarization, Inflammatory response, NLRP3 inflammasome

CLC Number: 

  • R743.3
[1] Barthels D, Das H. Current advances in ischemic stroke research and therapies [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4):165260. doi:10.1016/j.bbadis.2018.09.012.
[2] Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets [J]. Protoplasma, 2020, 257(2): 335-343.
[3] Jian Z, Liu R, Zhu X, et al. The involvement and therapy target of immune cells after ischemic stroke [J]. Front Immunol, 2019, 10: 2167. doi: 10.3389/fimmu.2019.02167.
[4] Anrather J, ladecola C. Inflammation and stroke: an overview [J]. Neurotherapeutics, 2016, 13(4): 661-670.
[5] 王蕾, 张毅. 小胶质细胞在成年人大脑中的生理功能研究进展[J]. 生物医学工程与临床, 2019, 23(1): 102-104. WANG Lei, ZHANG Yi. Research progress on the physiological functions of microglia in the adult brain [J]. Biomedical Engineering and Clinical Medicine, 2019, 23(1):1 02-104.
[6] Li LZ, Huang YY, Yang ZH, et al. Potential microglia-based interventions for stroke [J]. CNS Neurosci Ther, 2020, 26(3): 288-296.
[7] 陈浩伦, 吴春云. 脑损伤后小胶质细胞极化现象的研究进展[J].神经解剖学杂志, 2020, 36(2): 224-228. CHEN Haolun, WU Chunyun. Research progress on polarization of microglia after brain injury [J]. Chinese Journal of Neuroanatomy, 2020, 36(2): 224-228.
[8] Shampay J, Szostak JW, Blackburn EH. DNA sequences of telomeres maintained in yeast [J]. Nature, 1984, 310(5973): 154-157.
[9] Yamada H, Ishii KJ, Klinman DM. Suppressive oligodeoxynucleotides inhibit CpG-induced inflammation of the mouse lung [J]. Crit Care Med, 2004, 32(10): 2045-2049.
[10] Steinhagen F, Zillinger T, Peukert K, et al. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes [J]. Eur J Immunol, 2018, 48(4): 605-611.
[11] Zeuner RA, Verthelyi D, Gursel M, et al. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis [J]. Arthritis Rheum, 2003, 48(6): 1701-1707.
[12] Shirota H, Gursel I, Gursel M, et al. Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock [J]. J Immunol, 2005, 174(8): 4579-4583.
[13] Li N, Liu YH, Li SL, et al. Protective role of synthetic oligodeoxynucleotides expressing immunosuppressive TTAGGG motifs in concanavalin A-induced hepatitis [J]. Immunol Lett, 2013, 151(1-2): 54-60.
[14] Dong L, Ito S, Ishii KJ, et al. Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB x NZW mice [J]. Arthritis Rheum, 2005, 52(2): 651-658.
[15] Zhao J, Mou Y, Bernstock JD, et al. Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats [J]. PLoS One, 2015, 10(10): e0140772. doi: 10.1371/journal.pone.0140772.
[16] Arikh NS, Merkler AE, Iadecola C. Inflammation, autoimmunity, infection, and stroke: epidemiology and lessons from therapeutic intervention [J]. Stroke, 2020, 51(3): 711-718.
[17] Sakai S, Shichita T. Inflammation and neural repair after ischemic brain injury [J]. Neurochem Int, 2019, 130: 104316. doi: 10.1016/j.neuint.2018.10.013.
[18] Zhang S. Microglial activation after ischaemic stroke [J]. Stroke Vasc Neurol, 2019, 4(2): 71-74.
[19] Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke [J]. Biomed Pharmacother, 2018, 105: 518-525. doi: 10.1016/j.biopha.2018.05.143.
[20] Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery [J]. Pharmacol Res, 2019, 147: 104349. doi: 10.1016/j.phrs.2019.104349.
[21] Rawlinson C, Jenkins S, Thei L, et al. Post-ischaemic immunological response in the brain: targeting microglia in ischaemic stroke therapy [J]. Brain Sci, 2020, 10(3): 159. doi: 10.3390/brainsci10030159.
[22] Xiao L, Zheng H, Li J, et al. Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets [J]. Mol Neurobiol, 2020, 57(12): 5130-5149.
[23] 骆嵩, 屈洪党, 马博. 缺血性脑卒中NLRP3炎症小体活化介导M1小胶质细胞焦亡机制的研究进展[J].齐齐哈尔医学院学报, 2020, 41(1): 82-84. LUO Song, QU Hongdang, MA Bo. Research progress on the mechanism of NLRP3 inflammasome activation mediated M1 microglia pyrolysis in ischemic stroke [J]. Journal of Qiqihar Medical College, 2020, 41(1): 82-84.
[24] Gursel I, Gursel M, Yamada H, et al. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation [J]. J Immunol, 2003, 171(3): 1393-1400.
[25] Fouquerel E, Parikh D, Opresko P. DNA damage processing at telomeres: The ends justify the means[J]. DNA Repair(Amst), 2016, 44: 159-168. doi: 10.1016/j.dnarep.2016.05.022.
[26] Tan J, Lan L. The DNA secondary structures at telomeres and genome instability [J]. Cell Biosci, 2020, 10:47. doi: 10.1186/s13578-020-00409-z.
[1] ZHANG Yu, HAN Chen, WANG Zhaoxia, WANG Zhaopeng, ZHANG Yueying, ZHOU Shuping, MA Ranran, WANG Hengxiao. Protective effects of Tamarix chinensis Lour on mice with alcoholic liver injury and its mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(2): 61-67.
[2] WANG Na, CHEN Naiyao. Effect of umbilical cord mesenchymal stem cells on microglial polarization and proliferation [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(10): 16-20.
[3] LI Guiting, ZHANG Rui, ZOU Shanshan, DING Ming. Effects of ketamine on the learning and memory ability as well as the TSPO protein expression in hippocampus in juvenile mice [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(4): 55-60.
[4] YUAN Ruili, SUN Ruopeng, LIU Xinjie. Caspase-1 activation contributes to Nod2-induced tolerance in microglia cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(2): 34-38.
[5] LI Mei, MENG Qinghui, CAI Qiaoying, XU Yan, FAN Xiaoting. Effect of acetylpuerarin on the expression of caspase-3 in BV-2 microglia induced by Aβ25-35 [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(10): 32-36.
[6] YUE Qingwei, ZHU Dexiao, WU Jintao, LIU Haili, ZHANG Jing, LI Guibao, DING Zhaoxi, SUN Jinhao . Methamphetamine inhibits spontaneous action potential frequency and hyperpolarization-activated cation current in mesolimbic dopaminergic neurons [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(5): 10-14.
[7] MIAO Yu-lian, WU Chuan-long, LIU Jin-bo, ZHANG Xiao-li. Effects of resveratrol on brain inflammation and the level of Aβ1-42 in hippocampus from ovariectomized obese rats fed with a high-fat diet [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(8): 17-21.
[8] QI Shen, HAN Xiao-juan, WANG Lu, ZHANG Qing-hua, DU Yi-feng. Effects of Piper Kadsura Ohwi extracts on IL-1β and TNF-α  expressions in activated microglia [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(5): 11-14.
[9] HAN Xiaojuan1, MA Xue-qiang2, DU Yi-feng1. Effects of Piper Kadsura Ohwi extracts on β-amyloid protein-induced activation of microglia in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(5): 6-10.
[10] ZHANG Hui, GUO Yu-ji, HAO Ai-jun, MA Bao-hua. Effect of Granulocyte-colony stimulating factor on microglial function in
the acute spinal cord injury mice model
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(5): 10-.
[11] WEN Xian-yu, MAO qiao, CUI Chun-ai. Effects of nutmeg extraction on microglial BV2 cells treated with IFN-γ [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(9): 21-.
[12] LI Shu-ling1, XING Yi2, LI Yu-zhu1, GONG Li1, LI Hui3. Effect of Bu-Wang-San on estrogen and inflammatory  responses in ovariectomized rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(3): 50-54.
[13] LI Shu-ling1, XING Yi2, LI Yu-zhu1, GONG Li1, LI Hui3. Effect of Bu-Wang-San on estrogen and inflammatory  responses in ovariectomized rats [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(3): 50-54.
[14] MENG Tao1, ZHANG Xin-yu2, LI Xing-hua2, YU Jin-gui1. Comparison of morphine and fentanyl on systemic inflammatory reaction and myocardial function in cardio-valve  replacement surgery under CPB [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(2): 102-105.
[15] WANG Mei-xia, LIU Xue-ping, XU Song, DONG Chuan-fang, HOU Liang, YUAN Shu-hua. Effect of advanced glycation end products on interleukin-1β and tumor  necrosis factor α secretion from microglial cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(2): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!