山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (11): 54-62.doi: 10.6040/j.issn.1671-7554.0.2022.0797
李娜1,郭增丽2,迟令懿3,杨立卓2,马志勇1,付志婕2
LI Na1, GUO Zengli2, CHI Lingyi3, YANG Lizhuo2, MA Zhiyong1, FU Zhijie2
摘要: 目的 探讨甲醛对人嗜酸性粒细胞(EOL-1)的急性损伤作用及相关机制。 方法 体外培养EOL-1细胞,将甲醛室温处理2 h的EOL-1细胞设置为0 mmol组、5 mmol组、10 mmol组、25 mmol组及50 mmol组;同时将3种活性氧(ROS)通路抑制剂(NADPH氧化酶抑制剂DPI、细胞透性超氧化物清除剂Tiron、谷胱甘肽稳定前体NAC)和 25 mmol甲醛共同处理后的细胞设置为对照组、甲醛组、甲醛+DPI组、甲醛+Trion组和甲醛+NAC组;依据NAC浓度的不同,设置为对照组、甲醛组、甲醛+0.01 mmol NAC组、甲醛+0.1 mmol NAC组和甲醛+1 mmol NAC组。采用碘化丙啶(PI)和Hoechst荧光染色法检测各组细胞凋亡和死亡的表达,采用罗丹明123(Rho-123)荧光标记法检测细胞线粒体功能损伤,采用Western blotting法检测损伤信号通路蛋白Bax、Bcl-2的表达。 结果 不同浓度甲醛组(0、5、10、25、50 mmol)细胞死亡率分别为(3.313±2.395)%、(8.205±5.719)%、(20.335±5.167)%、(19.387±6.056)%、(28.043±8.851)%,与0 mmol组比较,5 mmol组细胞凋亡和死亡无增加(P=1.00),但是10 mmol组(P=0.030)、25 mmol组(P=0.033)和50 mmol组(P=0.001)甲醛处理细胞死亡显著增加,其半数效应浓度EC50=25 mmol;甲醛组、甲醛+DPI组、甲醛+Trion组、甲醛+NAC组细胞死亡率分别为(61.430±9.885)%、(57.907±13.619)%、(55.700±18.487)%、(21.837±6.674)%,与甲醛组比较,甲醛+DPI组(P=1.00)、甲醛+Trion组(P=1.00)对甲醛诱导的细胞损伤无影响,但是甲醛+NAC组逆转甲醛诱导的细胞死亡(P=0.01);与甲醛组(52.853±11.338)%对比,随着NAC浓度的不同,细胞死亡率不同[甲醛+0.01 mmol NAC组(10.620±4.483)%,甲醛+0.1 mmol NAC组(6.257±6.265)%,甲醛+1 mmol NAC组(4.002±2.50)%],NAC对甲醛诱导的细胞死亡呈浓度依赖性的逆转作用。Rho-123荧光标记结果显示,与0 mmol组相比, 10 mmol组、25 mmol组、50 mmol组可以降低线粒体功能(P<0.001),而甲醛+NAC组逆转甲醛诱导的线粒体功能损伤(809.339±163.210 vs 675.552±126.993,P=0.021)。Western blotting结果显示,与对照组比较,甲醛25 mmol组能下调Bcl-2蛋白表达(0.401±0.122,P<0.001),上调Bax蛋白表达(2.937±1.388,P=0.006),甲醛+NAC组可明显减轻甲醛诱导的Bax蛋白的表达上调(1.196±0.597,P=0.018)和Bcl-2蛋白的表达下调(0.717±0.246,P=0.018)。 结论 甲醛≥10 mmol通过抑制线粒体功能和调控Bcl-2/Bax信号通路诱导嗜酸性粒细胞EOL-1的损伤,而抗氧化剂NAC可减轻甲醛对EOL-1细胞的损伤及其信号通路。
中图分类号:
[1] | Nielsen GD, Larsen ST, Wolkoff P. re-evaluation of the WHO(2010)formaldehyde indoor air quality guideline for cancer risk assessment [J]. Arch Toxicol, 2017, 91(1): 35-61. |
[2] | Ge J, Yang H, Lu X, et al. Combined exposure to formaldehyde and PM2.5: hematopoietic toxicity and molecular mechanism in mice [J]. Environ Int, 2020, 144: 106050. doi: 10.1016/j.envint.2020.106050. |
[3] | Nielsen GD, Wolkoff P. Cancer effects of formaldehyde: a proposal for an indoor air guideline value [J]. Arch Toxicol, 2010, 84(6): 423-446. |
[4] | Zhang Y, Yang Y, He X, et al. The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development [J]. J Cell Mol Med, 2021, 25(12): 5358-5371. |
[5] | Tulpule K, Dringen R. Formaldehyde in brain: an overlooked player in neurodegeneration? [J]. J Neurochem, 2013, 127(1): 7-21. |
[6] | Tagiyeva N, Sheikh A. Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults[J]. Expert Rev Clin Immunol, 2014, 10(12): 1611-1639. |
[7] | Li L, Hua L, He Y, et al. Differential effects of formaldehyde exposure on airway inflammation and bronchial hyperresponsiveness in BALB/c and C57BL/6 mice [J]. PLoS One, 2017, 12(6): e0179231. doi: 10.1371/journal.pone.0179231. |
[8] | Mai X, Zhou F, Lin P, et al. Metformin scavenges formaldehyde and attenuates formaldehyde-induced bovine serum albumin crosslinking and cellular DNA damage [J]. Environ Toxicol, 2020, 35(11): 1170-1178. |
[9] | Aoki A, Hirahara K, Kiuchi M, et al. Eosinophils: Cells known for over 140 years with broad and new functions [J]. Allergol Int, 2021, 70(1): 3-8. |
[10] | Liu DD, Zheng YD, Li B, et al. Adjuvant effects of gaseous formaldehyde on the hyper-responsiveness and inflammation in a mouse asthma model immunized by ovalbumin [J]. J Immunotoxicol, 2011, 8(4): 305-314. |
[11] | Sadakane K, Takano H, Ichinose T, et al. Formaldehyde enhances mite allergen-induced eosinophilic inflammation in the murine airway [J]. J Environ Pathol Toxicol Oncol, 2002, 21(3): 267-276. |
[12] | Sastre B, Rodrigo-Muñoz JM, Garcia-Sanchez DA, et al. Eosinophils: old players in a new game [J]. J Investig Allergol Clin Immunol, 2018, 28(5): 289-304. |
[13] | Ilmarinen P, Kankaanranta H. Eosinophil apoptosis as a therapeutic target in allergic asthma [J]. Basic Clin Pharmacol Toxicol, 2014, 114(1): 109-117. |
[14] | Kankaanranta H, Lindsay MA, Giembycz MA, et al. Delayed eosinophil apoptosis in asthma [J]. J Allergy Clin Immunol, 2000, 106(1 pt 1): 77-83. |
[15] | Ishihara K. Eosinophil cell lines [J]. Methods Mol Biol, 2014, 1178: 45-51. doi: 10.1007/978-1-4939-1016-8_5. |
[16] | Ma Z, Qi J, Fu Z, et al. Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats [J]. PLoS One, 2013, 8(4): e61018. |
[17] | Wong R, Chen W, Zhong X, et al. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion [J]. J Cell Physiol, 2018, 233(1): 363-370. |
[18] | Li DL, Ma ZY, Fu ZJ, et al. Glibenclamide decreases ATP-induced intracellular calcium transient elevation via inhibiting reactive oxygen species and mitochondrial activity in macrophages [J]. PLoS One, 2014, 9(2): e89083. doi: 10.1371/journal.pone.0089083. |
[19] | (·overI)nci M, Zararsız(·overI), Davarcı M, et al. Toxic effects of formaldehyde on the urinary system [J]. Turk J Urol, 2013, 39(1): 48-52. |
[20] | Sancini A, Rosati MV, De Sio S, et al. Exposure to formaldehyde in health care: an evaluation of the white blood count differential [J]. G Ital Med Lav Ergon, 2014, 36(3): 153-159. |
[21] | Qiao Y, Li B, Yang G, et al. Irritant and adjuvant effects of gaseous formaldehyde on the ovalbumin-induced hyperresponsiveness and inflammation in a rat model [J]. Inhal Toxicol, 2009, 21(14): 1200-1207. |
[22] | St-Laurent J, Boulay ME, Prince P, et al. Comparison of cell fixation methods of induced sputum specimens: an immunocytochemical analysis [J]. J Immunol Methods, 2006, 308(1/2): 36-42. |
[23] | Tyihák E, Bocsi J, Timár F, et al. Formaldehyde promotes and inhibits the proliferation of cultured tumour and endothelial cells [J]. Cell Prolif, 2001, 34(3): 135-141. |
[24] | Li Q, Mei Q, Huyan T, et al. Effects of formaldehyde exposure on human NK cells in vitro [J]. Environ Toxicol Pharmacol, 2013, 36(3): 948-955. |
[25] | Lin Z, Luo W, Li H, et al. The effect of endogenous formaldehyde on the rat aorta endothelial cells [J]. Toxicol Lett, 2005, 159(2): 134-143. |
[26] | Szende B, Tyihák E. Effect of formaldehyde on cell proliferation and death [J]. Cell Biol Int, 2010, 34(12): 1273-1282. |
[27] | He RQ, Lu J, Miao JY. Formaldehyde stress [J]. Sci China Life Sci, 2010, 53(12): 1399-1404. |
[28] | Huang FM, Chou LS, Chou MY, et al. Protective effect of NAC on formaldehyde-containing-ZOE-based root-canal-sealers-induced cyclooxygenase-2 expression and cytotoxicity in human osteoblastic cells [J]. J Biomed Mater Res B Appl Biomater, 2005, 74(2): 768-773. |
[29] | Ayaki H, Lee MJ, Sumino K, et al. Different cytoprotective effect of antioxidants and change in the iron regulatory system in rodent cells exposed to paraquat or formaldehyde [J]. Toxicology, 2005, 208(1): 73-79. |
[30] | Li XN, Yang SQ, Li M, et al. Formaldehyde induces ferroptosis in hippocampal neuronal cells by upregulation of the Warburg effect [J]. Toxicology, 2021, 448: 152650. doi: 10.1016/j.tox.2020.152650. |
[31] | Nadalutti CA, Stefanick DF, Zhao ML, et al. Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts [J]. Sci Rep, 2020, 10(1): 5575. doi: 10.1038/s41598-020-61477-2. |
[32] | Xin F, Tian Y, Gao C, et al. A two-photon fluorescent probe for basal formaldehyde imaging in zebrafish and visualization of mitochondrial damage induced by FA stress [J]. Analyst, 2019, 144(7): 2297-2303. |
[33] | Shafie B, Pourahmad J, Rezaei M. N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver [J]. J Food Biochem, 2021, 45(7): e13775. doi:10.1111/jfbc.13775. |
[34] | Kobroob A, Peerapanyasut W, Kumfu S, et al. Effectiveness of N-acetylcysteine in the treatment of renal deterioration caused by long-term exposure to bisphenol A [J]. Biomolecules, 2021, 11(5): 655. |
[35] | Lim JH, Park SM, Yook JM, et al. Alpha-1 antitrypsin inhibits formaldehyde-induced apoptosis of human peritoneal mesothelial cells [J]. Perit Dial Int, 2020, 40(2): 124-131. |
[36] | Arslan-Acaroz D, Bay?瘙塂u-Sozbilir N. Ameliorative effect of boric acid against formaldehyde-induced oxidative stress in A549 cell lines [J]. Environ Sci Pollut Res Int, 2020, 27(4): 4067-4074. |
[37] | Zeng ML, Su Y, Li KY, et al. Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression [J]. Front Pharmacol, 2020, 11, 1222. doi: 10.3389/fphar.2020.01222. |
[1] | 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66. |
[2] | 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29. |
[3] | 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97. |
[4] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[5] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[6] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[7] | 曾媛媛,杨东鹏,董柱,张本,曹一秋,王晓武. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(11): 63-69. |
[8] | 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16. |
[9] | 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154. |
[10] | 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18. |
[11] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
[12] | 罗慧臣,胡丹慧,张济. miR-203-3p靶向TREM1基因调控TGF-β1/p38MAPK信号通路对狼疮性肾炎小鼠肾小管上皮细胞增殖和凋亡的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 18-25. |
[13] | 单冰,崔亮亮,张迎建,曹萌,秦大中,王丽珩,彭秀苗. 济南市宾馆、理发店和美容院室内空气中常见化学污染物的健康风险评估[J]. 山东大学学报 (医学版), 2021, 59(12): 110-119. |
[14] | 蔡秋景,张倩,何学佳,孙文丽,郭爱丽,张楠,朱薇薇. 气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J]. 山东大学学报 (医学版), 2020, 58(4): 78-83. |
[15] | 宋孟晓,王燕,刘进忠. miR-222-5p在人根尖乳头干细胞成骨/成牙本质向分化中的作用[J]. 山东大学学报 (医学版), 2020, 58(3): 87-93. |
|