您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (10): 33-41.doi: 10.6040/j.issn.1671-7554.0.2022.0169

• 临床医学 • 上一篇    下一篇

胰腺癌不同进展期血清外泌体蛋白质组学分析

李雁儒,李娟,李培龙,杜鲁涛,王传新   

  1. 山东大学第二医院检验医学中心, 山东 济南 250033
  • 发布日期:2022-09-30
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划(2019GHZ003、2020CXGC011304、2021ZLGX02);济南市“高校20条”资助项目(2019GXRC004、2021GXRC020);肿瘤新型生物标志物研发与转化协同创新中心(CXZX2019006)

Proteomic analysis of serum exosomes in pancreatic cancer with different stages of progress

LI Yanru, LI Juan, LI Peilong, DU Lutao, WANG Chuanxin   

  1. Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Published:2022-09-30

摘要: 目的 筛选健康对照与不同进展期胰腺癌患者的血清外泌体差异蛋白质,绘制差异蛋白质表达图谱,并分析差异蛋白质参与的生物学过程。 方法 采用非标记定量蛋白质组学进行外泌体蛋白质检测,筛选差异蛋白质并进行生物信息学分析;利用蛋白免疫印迹对与胰腺癌进展相关的蛋白质进行血清学验证。 结果 在对照组、胰腺癌未转移组和转移组样品中共检测到2 242个蛋白质。通过不同分组差异蛋白质分析,共鉴定出664个差异具有统计学意义的蛋白质,主要参与囊泡介导转运、局灶黏附、细胞外基质(ECM)受体相互作用等信号通路。此外,鉴定到在3组间差异均有统计学意义的蛋白质5个,验证发现富亮氨酸α2糖蛋白1(LRG1)在胰腺癌转移组外泌体中表达量较高。 结论 对照组、胰腺癌未转移组和转移组间蛋白质表达存在差异,差异蛋白质主要富集于局灶黏附、细胞外基质受体相互作用等信号通路,且在3组间表达均有差异的外泌体蛋白质LRG1可能成为监测胰腺癌进展的血清学标志物。

关键词: 胰腺癌, 外泌体, 蛋白质组学, 生物信息学, 富亮氨酸α2糖蛋白1

Abstract: Objective To screen the differential proteins of serum exosomes in healthy controls and pancreatic cancer patients with different degrees of progression, draw the profile, and analyze their functions and biological processes. Methods Exosomes were quantitatively analyzed with label-free quantitative proteomic analysis technology. The differential proteins were screened and bioinformatic analysis was performed. The proteins associated with pancreatic cancer progression were serologically verified with Western blotting. Results A total of 2 242 proteins were detected in the control, non-metastatic and metastatic pancreatic cancer samples with label-free quantitative proteomic analysis and a total of 664 proteins with statistically significant differences were identified, which were mainly involved in vesicle-mediated transport, focal adhesion and extracellular cortex matrix(ECM)receptor interaction. Moreover, there were 5 proteins with statistically significant differences among the three groups, of which leucine-rich alpha-2-glycoprotein 1(LRG1)was highly expressed in serum exosomes of metastatic pancreatic cancer. Conclusion There are differences in protein expression patterns among healthy controls, non-metastatic and metastatic pancreatic cancer patients, and the differential proteins are mainly enriched in focal adhesion and ECM-receptor interaction and other signaling pathways. LRG1, which is different in all three groups, may be a serological marker for monitoring the progression of pancreatic cancer.

Key words: Pancreatic cancer, Exosome, Proteomics, Bioinformatics, Leucine-rich alpha-2-glycoprotein 1

中图分类号: 

  • R735.9
[1] Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7):493-502.
[2] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
[3] Vincent A, Herman J, Schulick R, et al. Pancreatic cancer[J]. Lancet, 2011, 378(9791): 607-620.
[4] Jiang K, Chen H, Fang Y, et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness[J]. J Exp Clin Cancer Res, 2021, 40(1): 21.
[5] Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718): 382-386.
[6] 韩柳, 孙宇. 胞外囊泡与癌症[J]. 中国细胞生物学学报, 2016, 38(4): 347-355. HAN Liu, SUN Yu. Extracellular vesicles and cancer[J]. Chinese Journal of Cell Biology, 2016, 38(4): 347-355.
[7] Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182.
[8] Liu Z, Liu Y, Qian L, et al. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies[J]. Mol Cell, 2021, 81(19): 4076-4090.
[9] Liu J, Yuan B, Cao J, et al. Ambra1 promotes TGFbeta signaling via nonproteolytic polyubiquitylation of smad4[J]. Cancer Res, 2021, 81(19): 5007-5020.
[10] Wu J, Gao W, Tang Q, et al. M2 macrophage-derived exosomes facilitate HCC metastasis by transferring alphaM beta2 integrin to tumor cells[J]. Hepatology, 2021, 73(4): 1365-1380.
[11] Wang D, Zhao C, Xu F, et al. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2[J]. Theranostics, 2021, 11(6): 2860-2875.
[12] Yuan X, Qian N, Ling S, et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells[J]. Theranostics, 2021, 11(3): 1429-1445.
[13] Wang S, Xu M, Li X, et al. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties[J]. J Hematol Oncol, 2018, 11(1): 82.
[14] Yoon JH, Ashktorab H, Smoot DT, et al. Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells[J]. Gastric Cancer, 2020, 23(5): 848-862.
[15] Repetto O, De Re V, Giuffrida P, et al. Proteomics signature of autoimmune atrophic gastritis: towards a link with gastric cancer[J]. Gastric Cancer, 2021, 24(3): 666-679.
[16] Thakur R, Singh PK. Molecular subtypes of pancreatic cancer: a proteomics approach[J]. Clin Cancer Res, 2021, 27(12): 3272-3274.
[17] Kugeratski FG, Hodge K, Lilla S, et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker[J]. Nat Cell Biol, 2021, 23(6): 631-641.
[18] Yang J, Zhang Y, Gao X, et al. Plasma-derived exosomal ALIX as a novel biomarker for diagnosis and classification of pancreatic cancer[J]. Front Oncol, 2021, 11: 628346. doi: 10.3389/fonc.2021.628346.
[19] Han S, Huo Z, Nguyen K, et al. The proteome of pancreatic cancer-derived exosomes reveals signatures rich in key signaling pathways[J]. Proteomics, 2019, 19(13): e1800394. doi: 10.1002/pmic.201800394.
[20] Castillo J, Bernard V, San Lucas FA, et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients[J]. Ann Oncol, 2018, 29(1): 223-229.
[21] Shi X, Guo X, Li X, et al. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover[J]. Cancer Lett, 2018, 433: 76-85. doi: 10.1016/j.canlet.2018.06.015.
[22] Okamoto H, Kusama T, Fujii H. Tyrosine phosphorylation of focal adhesion anchoring proteins enhances human pancreatic cancer cell invasion[J]. Pancreas, 2016, 45(7): 37-39.
[23] Wang X, Luo G, Zhang K, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis[J]. Cancer Res, 2018, 78(16): 4586-4598.
[24] Yang B, Feng X, Liu H, et al. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma[J]. Oncogene, 2020, 39(42): 6529-6543.
[25] Chen Q, Yu D, Zhao Y, et al. Screening and identification of hub genes in pancreatic cancer by integrated bioinformatics analysis[J]. J Cell Biochem, 2019, 120(12): 19496-19508.
[26] Chen S, Gao C, Yu T, et al. Bioinformatics analysis of a prognostic miRNA signature and potential key genes in pancreatic cancer[J]. Front Oncol, 2021, 11: 641289. doi: 10.3389/fonc.2021.641289.
[27] Singhal M, Gengenbacher N, Abdul Pari AA, et al. Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis[J]. Sci Transl Med, 2021, 13(609): eabe6805. doi: 10.1126/scitranslmed.abe6805.
[28] He L, Feng A, Guo H, et al. LRG1 mediated by ATF3 promotes growth and angiogenesis of gastric cancer by regulating the SRC/STAT3/VEGFA pathway[J]. Gastric Cancer, 2022, 25(3): 527-541.
[29] Zhong B, Cheng B, Huang X, et al. Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling[J]. Cell Death Dis, 2021, 13(1): 16. doi: 10.1038/s41419-021-04461-6.
[1] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[2] 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12.
[3] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[4] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[5] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[6] 华芳,张薇薇,吕波,辛玮. 生物信息学分析骨关节炎滑膜炎症相关基因和分子途径[J]. 山东大学学报 (医学版), 2021, 59(3): 10-17.
[7] 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33.
[8] 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 59-69.
[9] 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51.
[10] 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13.
[11] 刘小璟,夏西燕,肖珂,陈文丹,庄学伟. 外泌体lncRNA OGFRP1在84例非小细胞肺癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2020, 58(11): 71-75.
[12] 王国云,袁明,姬苗苗. 子宫内膜异位症发病机制研究进展[J]. 山东大学学报 (医学版), 2019, 57(6): 33-39.
[13] 魏萍,杜鲁涛,王卿,展垚,谢玉姣,张淑君,段伟丽,王传新. 血清外泌体miR-20b-5p对非小细胞肺癌的诊断价值[J]. 山东大学学报 (医学版), 2019, 57(4): 91-96.
[14] 朱爱国,马振敕,王健. 利用上皮源性卵巢癌预后的多基因信息建立预测预后模型[J]. 山东大学学报 (医学版), 2019, 57(10): 80-85.
[15] 王传新. 外泌体生物标志物与肿瘤发生发展的研究进展[J]. 山东大学学报 (医学版), 2018, 56(10): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[3] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[4] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[5] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[9] 李松林,刘培来,卢群山,马贺然. 胫骨高位截骨术联合自体脂肪间充质干细胞注射在膝关节软骨修复中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 82 -88 .
[10] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .