山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (8): 23-29.doi: 10.6040/j.issn.1671-7554.0.2022.0011
张秉芬1,周胜红2,王哲3
ZHANG Bingfen1, ZHOU Shenghong2, WANG Zhe3
摘要: 目的 探讨延龄草皂苷对肺间质纤维化大鼠的治疗作用及其可能机制。 方法 雄性SD大鼠50只,随机分为对照组,模型组,延龄草皂苷低、中、高剂量组[25 mg/(kg·d)、50 mg/(kg·d)和100 mg/(kg·d)],每组10只。除对照组外,其余各组采用气管插管注入伯莱霉素法(5 mg/kg)建立大鼠肺纤维化模型;次日开始连续给药28 d。处死大鼠后,取肺组织称重并计算肺系数;进行HE和Masson染色观察小鼠肺组织形态病理学变化;ELISA法检测大鼠白细胞介素-1β(IL-1β)、肿瘤坏死因子(TNF-α)、白细胞介素-6(IL-6)、丙二醛(MDA)和活性氧(ROS)的表达以及超氧化物歧化酶(SOD)的活性;Western blotting法检测大鼠肺组织中纤连蛋白(fibronectin)、胶原蛋白Ⅰ型(Collagen Ⅰ)、α-平滑肌肌动蛋白(α-SMA)、转化生长因子-β(TGF-β)、SMAD同源物3(Smad3)、Wnt3a、β-连环蛋白(β-catenin)和糖原合成酶激酶-3β(GSK-3β)的蛋白表达水平。 结果 与模型组比较,延龄草皂苷低、中、高剂量组的肺系数降低;大鼠肺组织炎性细胞浸润、胶原沉积和纤维化程度改善;大鼠IL-1β、TNF-α、IL-6、MDA和ROS的表达水平降低, SOD的活性升高,发挥抗炎、抗氧化作用;肺纤维化标志蛋白fibronectin,Collagen Ⅰ和α-SMA表达被抑制;大鼠肺组织TGF-β1、Smad3、Wnt3a、β-catenin和GSK-3β蛋白的表达水平降低,且治疗效果呈现剂量依赖性。 结论 延龄草皂苷可通过抗炎、抗氧化,抑制TGF-β/Smad3与Wnt/β-catenin信号通路激活,从而对肺纤维化产生保护作用。
中图分类号:
[1] Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fifibrosis[J]. J Clin Invest, 2018, 128(1): 45-53. [2] 伍徐娴, 杨勤, 罗新华, 等. 芍化纤胶囊对肝细胞线粒体脂质过氧化的影响 [J].贵阳医学院学报, 2004, 29(5): 406-409. WU Xuxian, YANG Qin, LUO Xinhua, et al. Effects of Shaohuaxian capsules on lipid peroxidation of hepatocyte mitochondria [J]. Journal of Guiyang Medical College, 2004, 29(5): 406-409. [3] Martinez FJ, Flaherty KR. Comprehensive and individualized patient care in idiopathic pulmonary fibrosis: refining approaches to diagnosis, prognosis, and treatment[J]. Chest, 2017, 151(5): 1173-1174. [4] Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: progress and future prospects[J]. J Ethnopharmacol, 2017, 198: 45-63. doi: 10.1016/j.jep.2016.12.042. [5] Suresh PS, Singh PP, Padwad YS, et al. Steroidal saponins from Trillium govanianum as α-amylase, α-glucosidase, and dipeptidyl peptidase IV inhibitory agents [J]. J Pharm Pharmacol, 2021, 73(4): 487-495. [6] Wu AG, Teng JF, Wong VKW, et al. Novel steroidal saponin isolated from Trillium tschonoskii maxim. exhibits anti-oxidative effect via autophagy induction in cellular and Caenorhabditis elegans models [J]. Phytomedicine, 2019, 65: 153088. doi: 10.1016/j.phymed.2019.153088. [7] Qian S, Tong S, Wu J, et al. Paris saponin VII extracted from Trillium tschonoskii induces autophagy and apoptosis in NSCLC cells [J]. J Ethnopharmacol, 2020, 248: 112304. doi: 10.1016/j.jep.2019.112304. [8] 张忠立, 左月明, 蔡妙婷,等. 延龄草根及根茎的化学成分研究(II)[J]. 中草药, 2013, 44(20): 2808-2811. ZHANG Zhongli, ZUO Yueming, CAI Miaoting, et al. Study on chemical constituents of roots and rhizomes of Trillium tschonoskii(II)[J]. Chinese Traditional and Herbal Drugs, 2013, 44(20): 2808-2811. [9] Yan T, Yu X, Sun X, et al. A new steroidal saponin, furotrilliumoside from Trillium tschonoskii inhibits lipopolysaccharide-induced inflammation in Raw264.7 cells by targeting PI3K/Akt, MARK and Nrf2/HO-1 pathways [J]. Fitoterapia, 2016, 115: 37-45. doi: 10.1016/j.fitote.2016.09.012. [10] Teng JF, Qin DL, Mei QB, et al. Polyphyllin VI, a saponin from Trillium tschonoskii Maxim. induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer [J]. Pharmacol Res, 2019, 147: 104396. doi: 10.1016/j.phrs.2019.104396. [11] 熊秋杨, 辛光, 李世一, 等. 延龄草皂苷对小鼠急性胰腺炎和相关肺损伤的影响[J]. 华西药学杂志, 2019, 34(6): 587-591. XIONG Qiuyang, XIN Guang, LI Shiyi, et al. Effects of Trillium saponins on acute pancreatitis and related lung injury in mice [J]. West China JOurnal of Pharmaceutical Sciences, 2019, 34(6): 587-591. [12] Yang F, Hou ZF, Zhu HY, et al. Catalpol protects against pulmonary fibrosis through inhibiting TGF-β1/Smad3 and Wnt/β-catenin signaling pathways[J]. Front Pharmacol, 2021, 11: 594139. doi: 10.3389/fphar.2020.594139. [13] Szapiel SV, Elson NA, Fulmer JD, et al. Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse[J]. Am Rev Respir Dis, 1979, 120(4): 893-899. [14] Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale[J]. J Clin Pathol, 1988, 41(4): 467-470. [15] Lopez AD, Avasarala S, Grewal S, et al. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome[J]. J Immunol, 2009, 183(12): 8244-8257. [16] Kala M, Shaikh MV, Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation[J]. Reprod Med Biol, 2016, 16(1): 28-35. [17] He C, Larson-casey JL, Gu L, et al. Cu, Zn-superoxide dismutase-mediated redox regulation of Jumonji domain containing 3 modulates macrophage polarization and pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2016, 55(1): 58-71. [18] Teixeira KC, Soares FS, Rocha LGC, et al. Attenuation of bleomycin-induced lung injury and oxidative stress by N-acetylcysteine plus deferoxamine[J]. Pulm Pharmacol Ther, 2008, 21(2): 309-316. [19] Yu WN, Sun LF, Yang H. Inhibitory effects of astragaloside IV on bleomycin-induced pulmonary fibrosis in rats via attenuation of oxidative stress and inflammation[J]. Inflammation, 2016, 39(5): 1835-1841. [20] Park SJ, Kim TH, Lee K, et al. Kurarinone attenuates BLM-induced pulmonary fibrosis via inhibiting TGF-β signaling pathways [J]. Int J Mol Sci, 2021, 22(16): 8388. [21] 王先丽, 任丹, 詹光杰, 等. 延龄草总皂苷对LPS诱导炎症大鼠的抗炎效果[J]. 基因组学与应用生物学, 2019, 38(8): 3697-3705. WANG Xianli, REN Dan, ZHAN Guangjie, et al. The anti-inflammatory effects of total Trillium tschonoskii Maxim Saponins on rats' inflammation induced by lipopolysaccharide [J]. Genomics and Applied Biology. 2019, 38(8): 3697-3705. [22] 满红霞, 肖培云, 杨永寿, 等. 特发性肺纤维化的发病机制及药物治疗研究进展[J]. 中国现代应用药学, 2015, 32(8): 1024-1028. MAN Hongxia, XIAO Peiyun, YANG Yongshou, et al. Pathogenesis of idiopathic pulmonary fibrosis and its advances in cytokine treatment[J]. Chinese Journal of Modern Applied Pharmacy, 2015, 32(8):1024-1028. [23] Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: From targeting to biomarkers[J]. Proc Am Thorac Soc, 2012, 9(3): 111-116. [24] Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions[J]. Clin Sci(Lond), 2011, 121(6): 233-251. [25] Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3-beta control Smad3 protein stability and modulate TGF-beta signaling[J]. Genes Dev, 2008, 22(1):106-120. [26] Zhang M, Wang M, Tan X, et al. Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes[J]. J Biol Chem, 2010, 285(12): 8703-8710. |
[1] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[2] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[3] | 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73. |
[4] | 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88. |
[5] | 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9. |
[6] | 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18. |
[7] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[8] | 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81. |
[9] | 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122. |
[10] | 张薇薇,华芳,梁超帅,褚苗苗,孙嘉忆,Frank Zaucke,辛玮. 促甲状腺激素通过抗炎蛋白CTRP3促进软骨细胞分化[J]. 山东大学学报 (医学版), 2022, 60(10): 1-8. |
[11] | 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报 (医学版), 2021, 59(9): 30-36. |
[12] | 王凤霞,王涛,刘晓. 格氏乳球菌致急性结石性胆囊炎1例[J]. 山东大学学报 (医学版), 2021, 59(6): 122-124. |
[13] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[14] | 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9. |
[15] | 邢志群,李德军,赵宝,许春阳,纪洪生. 45例老年患者术后谵妄与乙酰胆碱酯酶活性及炎症指标关联性[J]. 山东大学学报 (医学版), 2021, 59(3): 92-97. |
|