您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 57-68.doi: 10.6040/j.issn.1671-7554.0.2023.0427

• 基础医学 • 上一篇    下一篇

生物信息学鉴定低氧诱导小鼠肾脏线粒体损伤的Hub基因及其作用机制

高玉杰,龙启福,胡英,许玉珍,王茹,永胜   

  1. 青海大学医学部基础医学部, 青海 西宁 810016
  • 收稿日期:2023-05-22 发布日期:2023-10-10
  • 通讯作者: 永胜. E-mail:yongsheng@qhu.edu.cn
  • 基金资助:
    青海省科技计划项目基金(2023-ZJ-771)

Bioinformatics identification of the Hub genes and mechanism of hypoxia-induced mitochondrial damage in mouse kidney

GAO Yujie, LONG Qifu, HU Ying, XU Yuzhen, WANG Ru, YONG Sheng   

  1. Department of Basic Medicine, College of Medicine, Qinghai University, Xining 810016, Qinghai, China
  • Received:2023-05-22 Published:2023-10-10

摘要: 目的 利用生物信息学分析挖掘低氧介导线粒体损伤的关键基因,并分析关键基因与小鼠肾脏组织凋亡的相关性,进一步阐明高原低氧条件下小鼠肾脏组织损伤的分子作用机制。 方法 构建30 d常氧与低氧动物模型,分别作为平原常氧组(n=5)和高原低氧组(n=5),测定血气分析指标与小鼠肾脏指数,通过H&E染色观察小鼠肾脏组织病理学改变,对平原常氧组与高原低氧组小鼠肾脏组织进行转录组学测序。随后将测序得到的差异表达基因(DEGs)分别与线粒体数据库、凋亡相关基因数据库进行关联,鉴定差异线粒体功能相关基因(DE-MFRGs)与差异凋亡相关基因(DE-ARGs),蛋白质互作(PPI)网络筛选Hub基因,利用生物信息学对DEGs、DE-MFRGs、DE-ARGs进行富集分析,并通过RT-qPCR 和 Western blotting对Hub 基因及凋亡基因进行验证。 结果 与平原常氧组相比,高原低氧组小鼠肾脏指数显著下降。H&E染色结果显示,高原低氧组小鼠肾小球明显萎缩,肾小管上皮细胞肿胀、破裂,炎细胞浸润,部分肾小管上皮细胞体积增大,胞浆疏松淡染,可见空泡变性。低氧暴露条件下共鉴定出3 007个DEGs,其中有464个基因与线粒体功能相关,被定义为DE-MFRGs。对DE-MFRGs进行KEGG富集分析发现,其主要富集在帕金森病信号通路、氧化磷酸化信号通路、产热信号通路、阿尔兹海默病信号通路、三羧酸循环信号通路、NAFLD信号通路、代谢信号通路等与线粒体功能相关的通路中。通过构建PPI网络共鉴定出3个Hub基因(SOD2、TUFM、MRPL12),SOD2、TUFM、MRPL12的mRNA和蛋白表达量均下调。进一步发现Hub基因与33个ARGs基因均出现正相关与负相关,并验证了小鼠肾脏组织ARGs中CASPASE3、BCL2、BAK基因的mRNA与蛋白表达量,结果显示,CASPASE3与BAK基因表达上调,BCL2基因表达下调。 结论 高原低氧环境通过调控SOD2、TUFM与MRPL12基因的表达,介导小鼠肾脏组织线粒体功能紊乱,进一步诱导小鼠肾脏组织损伤与凋亡。

关键词: 高原低氧, 肾脏, 线粒体功能, Hub基因, 凋亡, 线粒体数据库

Abstract: Objective To explore the Hub genes of hypoxia-induced mitochondrial damage by bioinformatics analysis, and to analyze the correlation between hub genes and apoptosis of mouse kidney tissue, so as to elucidate the molecular mechanism of hypoxia-induced mitochondrial damage in mice at high altitude. Methods After animal models of 30 d normoxicity group(n=5)and hypoxia group(n=5)were established, blood gas and renal indexes were determined. Histopathological changes of renal tissues were observed with H&E staining, and transcriptomics sequencing was performed. The differentially expressed genes(DEGs)were correlated with mitochondrial database and apoptosis-related gene database to identify DEGs related to mitochondrial function(DE-MFRGs)and DEGs related to apoptosis(DE-ARGs), and to screen Hub genes for protein-protein interaction(PPI). KEGG enrichment analysis was conducted on DEGs, DE-MFRGs and DE-ARGs. Hub genes and DE-ARGs were verified with RT-qPCR and Western blotting. Results Compared with the normoxicity group, the hypoxia group had significantly decreased kidney indexes. H&E staining results showed that the glomeruli in the hypoxia group were significantly atrophied; the renal tubule epithelial cells were swollen, ruptured, or infiltrated by inflammatory cells; the volume of some renal tubule epithelial cells was increased; the cytoplasm was loose and light stained, with cavitation degeneration. A total of 3,007 DEGs were identified under hypoxic exposure, among which 464 were related to mitochondrial function and were defined as DE-MFRGs. KEGG enrichment analysis of DE-MFRGs showed that they were involved with Parkinsons disease signaling pathway, oxidative phosphorylation signaling pathway, thermogenesis signaling pathway, Alzheimers disease signaling pathway, tricarboxylic acid cycling signaling pathway, NAFLD signaling pathway, metabolic signaling pathway and other pathways related to mitochondrial function. Three Hub genes(SOD2, TUFM and MRPL12)were identified through the construction of PPI network. The mRNA and protein expressions of SOD2, TUFM and MRPL12 were down-regulated. Furthermore, Hub genes were positively or negatively correlated with 33 ARGs genes, and the mRNA expression of CASPASE3 and BAK were up-regulated, while that of BCL2 was down-regulated. Conclusion The high altitude hypoxia environment can regulate the mRNA expressions of SOD2, TUFM and MRPL12, mediate the mitochondrial dysfunction of mouse kidney tissue, and induce damage and apoptosis.

Key words: Plateau hypoxia, Kidney, Mitochondrial function, Hub gene, Apoptosis, Mitochondrial database

中图分类号: 

  • R34
[1] MacIntyre NR. Tissue hypoxia: implications for the respiratory clinician [J]. Respir Care, 2014, 59(10): 1590-1596.
[2] Ham PB 3rd, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging [J]. Prog Neurobiol, 2017, 157: 92-116. doi: 10.1016/j.pneurobio.2016.06.006.
[3] Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia [J]. Redox Biol, 2017, 12: 208-215. doi: 10.1016/j.redox.2017.02.012.
[4] Johnson J, Mercado-Ayon E, Mercado-Ayon Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases [J]. Arch Biochem Biophys, 2021, 702: 108698. doi: 10.1016/j.abb.2020.108698.
[5] Rizwan H, Pal S, Sabnam S, et al. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes [J]. Life Sci, 2020, 241: 117148. doi: 10.1016/j.lfs.2019.117148.
[6] Kim SH, Kim H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review [J]. Nutrients, 2018, 10(9): 1137. doi: 10.3390/nu10091137.
[7] Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling [J]. Mitochondrion, 2019, 49: 35-45. doi: 10.1016/j.mito.2019.07.003.
[8] Vart P, Grams ME. Measuring and assessing kidney function [J]. Semin Nephrol, 2016, 36(4): 262-272.
[9] Ashkar F, Bhullar KS, Wu J. The effect of polyphenols on kidney disease: targeting mitochondria [J]. Nutrients, 2022, 14(15): 3115. doi: 10.3390/nu14153115.
[10] Liu H, Li Y, Xiong J. The role of hypoxia-inducible factor-1 alpha in renal disease [J]. Molecules, 2022, 27(21): 7318. doi: 10.3390/molecules27217318.
[11] Fu ZJ, Wang ZY, Xu L, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury [J]. Redox Biol, 2020, 36: 101671. doi: 10.1016/j.redox.2020.101671.
[12] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets [J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.
[13] Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization [J]. Bioinformatics, 2011, 27(3): 431-432.
[14] Chin CH, Chen SH, Wu HH, et al cytoHubba: identifying hub objects and sub-networks from complex interactome [J]. BMC Syst Biol, 2014, 8 Suppl 4(Suppl 4): S11. doi: 10.1186/1752-0509-8-S4-S11.
[15] Alateyah N, Gupta I, Rusyniak RS, et al. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression [J]. Molecules, 2022, 27(3): 811. doi: 10.3390/molecules27030811.
[16] Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases [J]. Antioxid Redox Signal, 2011, 15(6): 1583-1606.
[17] Debeljak M, Riel S, Lin MT, et al. Analytical validation of SOD2 genotyping [J]. Methods Protoc, 2022, 6(1): 4. doi: 10.3390/mps6010004.
[18] Liu T, Ma X, Ouyang T, et al. Efficacy of 5-aminolevulinic acid-based photodynamic therapy against keloid compromised by downregulation of SIRT1-SIRT3-SOD2-mROS dependent autophagy pathway [J]. Redox Biol, 2019, 20: 195-203. doi: 10.1016/j.redox.2018.10.011.
[19] Sharma S, Bhattarai S, Ara H, et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy [J]. Redox Biol, 2020, 37: 101740. doi: 10.1016/j.redox.2020.101740.
[20] Nie S, Shi Z, Shi M, et al. PPARγ/SOD2 protects against mitochondrial ROS-dependent apoptosis via inhibiting ATG4D-mediated mitophagy to promote pancreatic cancer proliferation [J]. Front Cell Dev Biol, 2021, 9: 745554. doi: 10.3389/fcell.2021.745554.
[21] Choi CY, Vo MT, Nicholas J, et al. Autophagy-competent mitochondrial translation elongation factor TUFM inhibits caspase-8-mediated apoptosis [J]. Cell Death Differ, 2022, 29(2): 451-464.
[22] Tian C, Min X, Zhao Y, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM [J]. J Hepatol, 2022, 77(6): 1491-1503.
[23] Wei R, Lv X, Fang C, et al. Silencing TUFM inhibits development of monocrotaline-induced pulmonary hypertension by regulating mitochondrial autophagy via AMPK/mTOR signal pathway [J]. Oxid Med Cell Longev, 2022, 2022: 4931611. doi: 10.1155/2022/4931611.
[24] Zhong BR, Zhou GF, Song L, et al. TUFM is involved in Alzheimers disease-like pathologies that are associated with ROS [J]. FASEB J, 2021, 35(5): e21445. doi: 10.1096/fj.202002461R.
[25] Yang Y, Li C, Gu X, et al. ING2 controls mitochondrial respiration via modulating MRPL12 ubiquitination in renal tubular epithelial cells [J]. Front Cell Dev Biol, 2021, 9: 700195. doi: 10.3389/fcell.2021.700195.
[26] Serre V, Rozanska A, Beinat M, et al. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency [J]. Biochim Biophys Acta, 2013, 1832(8): 1304-1312.
[27] Gu X, Liu Y, Wang N, et al. Transcription of MRPL12 regulated by Nrf2 contributes to the mitochondrial dysfunction in diabetic kidney disease [J]. Free Radic Biol Med, 2021, 164: 329-340. doi: 10.1016/j.freeradbiomed.2021.01.004.
[28] Hu Y, Liu Y, Ma C, et al. MRPL12 acts as a novel prognostic biomarker involved in immune cell infiltration and tumor progression of lung adenocarcinoma [J]. Int J Mol Sci, 2023, 24(3): 2762. doi: 10.3390/ijms24032762.
[29] Mohsin M, Tabassum G, Ahmad S, et al. The role of mitophagy in pulmonary sepsis [J]. Mitochondrion, 2021, 59: 63-75. doi: 1016.2021/j.mito.04.009.
[30] Wang X, Liao W, Chen J, et al. Caffeic acid attenuates irradiation-induced hematopoietic stem cell apoptosis through inhibiting mitochondrial damage [J]. Exp Cell Res, 2021, 409(2): 112934. doi: 1016.2021/j.yexcr.112934.
[31] Ma LL, Kong FJ, Dong Z, et al. Hypertrophic preconditioning attenuates myocardial ischaemia-reperfusion injury by modulating SIRT3-SOD2-mROS-dependent autophagy [J]. Cell Prolif, 2021, 54(7): e13051. doi: 10.1111/cpr.13051.
[32] Samec N, Jovcevska I, Stojan J, et al. Glioblastoma-specific anti-TUFM nanobody for in-vitro immunoimaging and cancer stem cell targeting [J]. Oncotarget, 2018, 9(25): 17282-17299.
[33] Ji X, Chu L, Su D, et al. MRPL12-ANT3 interaction involves in acute kidney injury via regulating MPTP of tubular epithelial cells [J]. iScience, 2023, 26(5): 106656. doi: 10.1016/j.isci.2023.106656.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[3] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[4] 曹华琳,贾彦召,曲莉,尹昕. CircFAT1调节miR-296-3p/MAPRE1轴对鼻咽癌细胞增殖、凋亡和放疗敏感性的影响[J]. 山东大学学报 (医学版), 2023, 61(9): 38-46.
[5] 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93.
[6] 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9.
[7] 邵长秀,贺青卿,庄晓璇,周鹏,李小磊,岳涛,徐婧,李陈钰,郭浩男,庄大勇. 甲状旁腺全切加微量腺体自体移植术治疗109例肾性继发性甲状旁腺功能亢进的长期疗效[J]. 山东大学学报 (医学版), 2023, 61(4): 42-48.
[8] 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16.
[9] 宋宜耘,于慧,高兆丽,李宪花. 基于SIRT1/PGC-1α通路探讨葡萄籽原花青素提取物对糖尿病肾脏疾病大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(1): 1-9.
[10] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[11] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[12] 李娜,郭增丽,迟令懿,杨立卓,马志勇,付志婕. 甲醛对嗜酸性粒细胞EOL-1的急性损伤作用机制[J]. 山东大学学报 (医学版), 2022, 60(11): 54-62.
[13] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[14] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[15] 易凡,李亮. 组织定居性记忆T细胞在肾脏中的维持与作用[J]. 山东大学学报 (医学版), 2021, 59(9): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[10] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .